
University of Sheffield

Sound Event Detection in Real Life Audio

Jack Deadman

Supervisor: Dr Jon Barker

A report submitted in fulfilment of the requirements for the degree of MComp
Computer Science

in the

Department of Computer Science

May 3, 2017

Declaration

All sentences or passages quoted in this report from other people’s work have been specifically

acknowledged by clear cross-referencing to author, work and page(s). Any illustrations which

are not the work of the author of this report have been used with the explicit permission

of the originator and are specifically acknowledged. I understand that failure to do this

amounts to plagiarism and will be considered grounds for failure in this project and the

degree examination as a whole.

Name:

Signature:

Date:

i

Abstract

The real world is full of sound events, cars passing, glass breaking, birds tweeting. This report

presents a polyphonic sound event detection system to detect these events in real life audio.

The system is compared against the state of the art techniques used in the 2016 DCASE

challenge, this is achieved through using 1 second segment-based performance metrics using

Error Rate and F-Score.

The project aimed to experiment with novel feature extraction and data augmentation

techniques to find where the performance benefits can be achieved.

By introducing novel feature extraction and data augmentation techniques the sound event

detection system successfully showed a considerable improvement over the baseline system

on a completely new dataset, achieving an Error Rate of 0.76, compared to the higher Error

Rate of 0.96 achieved by the baseline system.

ii

Contents

1 Introduction 1

1.1 Project Introduction . 1

1.1.1 Handling Polyphony . 2

1.1.2 Handling Context . 3

1.2 Aims and Objectives . 3

1.3 Overview of the Report . 4

2 Literature survey 5

2.1 Sound Event Detection Background . 5

2.1.1 Signal Processing . 5

2.2 Structure of Sound Event Detection Systems 7

2.3 Feature Extraction . 9

2.3.1 Spectral Features . 9

2.3.2 Temporal Features . 10

2.3.3 Spatial Features . 10

2.4 Data Augmentation . 11

2.4.1 Audio Mixing . 11

2.4.2 Vocal Tract Length Perturbation (VTLP) 11

2.4.3 Speed Perturbation . 12

2.5 SED Evaluation . 12

2.5.1 DCASE Challenge . 12

2.5.2 SED Metrics . 13

2.6 Sound Event Detection Visualisation . 16

2.7 Summary . 17

3 SED Visualisation 18

3.1 Requirements and Analysis . 18

3.2 Design . 19

3.3 Implementation . 20

3.4 Summary . 22

4 The Baseline System 24

iii

CONTENTS iv

4.1 TUT Dataset . 24

4.2 Feature Extraction . 26

4.3 Normalisation . 27

4.4 Classifier . 28

4.5 Post-Processing . 29

4.6 Re-engineering the DCASE system . 29

4.7 Experimental Setup . 30

4.8 Results and Discussion . 31

4.9 Summary . 33

5 Acoustic Features for Sound Event Detection 37

5.1 Introduction . 37

5.2 Experiment Setup . 38

5.3 Extending the Baseline Features . 38

5.4 Combining Novel Features . 43

5.5 Summary . 45

6 Data Augmentation for Sound Event Detection 46

6.1 Introduction . 46

6.2 Implementation and Limitations . 46

6.3 Experiment Setup . 49

6.4 Increasing the Dataset Through Augmentation 50

6.4.1 Performance Difference Between Augmentation Techniques 50

6.4.2 Effectiveness of Augmentation with Different Features 52

6.5 Combining Augmentation Techniques . 55

6.6 Running on a New Dataset . 56

6.7 Summary . 57

7 Conclusions 58

7.1 Goals Achieved . 58

7.2 Further Work . 58

7.3 Conclusion . 60

Appendices 65

A DCASE Challenge 2016 Results 66

B Installing the SED Visualisation tool 67

B.1 Front End . 67

B.2 Backend . 68

C Baseline System Results 69

C.1 Original Baseline System Results . 69

CONTENTS v

C.2 Re-engineered Baseline System Results . 70

C.2.1 Home . 70

C.2.2 Residential Area . 71

D Experiments with multiple Components 72

List of Figures

1.1 Diagram showing how different events can occur at the same time. 3

2.1 Diagram showing the discontinuities caused by framing a signal. 7

2.2 Plots showing a signal before and after a Hamming window is applied. 8

2.3 Diagram of the typical stages of a SED system. 9

2.4 Diagram demonstrating segment-based evaluation metrics. 13

2.5 Diagram showing how event labels are evaluated event by event 14

2.6 Screenshot taken from the flash visualisation tool created by Toni Heittola,

demonstrating the results of classifying events in a restaurant. 16

2.7 Screenshot of Python visualisation tool created by Toni Heittola 17

3.1 Mockup of the design of the main page of the visualisaion tool. 19

3.2 Diagram indicating the flow of data between the client and the server. 20

3.3 Screenshot of the homepage of the visualisation tool created. 21

3.4 Screenshot of the main part of the SED visualisation tool. 22

3.5 Screenshot of selecting a SED system to use for the visualisation. 23

4.1 Frequency of the events in the TUT training dataset 25

4.2 Duration of the events in the TUT training dataset 25

4.3 Comparison between traditional mel filter banks and the normalised version. 26

4.4 Class diagram for the SED system framework created. 34

4.5 Plot showing F-Scores of the baseline system using multiple components. . . 35

4.6 Plot showing Error Rates of the baseline system using multiple components. . 35

4.7 Screenshot the baseline system detecting events well. 36

4.8 Screenshot the baseline system detecting events poorly. 36

5.1 Results from using multiple different features averaged together, showing the

performance different between different components. 39

5.2 F-Score for different features over the two scenes. 40

5.3 Error Rate of the two scenes when features are concatenated onto the baseline

systems’ MFCCs. 41

5.4 Visualisation tool demonstrating the performance difference between features. 42

vi

LIST OF FIGURES vii

5.5 Results from combining features through concatenating them together into one

larger feature vector and then reducing with PCA. 44

5.6 Results from combining features through concatenating them together into one

larger feature vector with no feature reduction. 44

6.1 Plot showing the mapping between bins when using VTLP 49

6.2 Plots showing the F-Score improvement made through data augmentation in

the Home scene. 51

6.3 Plots showing the F-Score performance degrade in the Residential Area. . . . 51

6.4 Plots showing the performance degrade in terms of Error Rate in the Home

scene. 52

6.5 Plots showing the performance degrade in terms of Error Rate in the Residential

Area scene. 52

6.6 Plots showing the performance change of features’ scores after augmentation. 54

6.7 Plots comparing the performance of combining data augmentation techniques. 55

List of Tables

4.1 The results for the baseline system in the home scene using a threshold of 150

showing the error rate and the parts that make up the error rate. 31

4.2 The results for the baseline system in the home scene using a threshold of 150

showing the F-Score and the components that make the calculation. 32

5.1 Results of the different features concatenated onto the MFCCs averaging the

results from the two scenes. 42

6.1 Table of results of all the features extending the MFCCs with the various

different augmentations. 53

6.2 Results of the training the baseline and new system on new data 56

A.1 Results of the systems for the DCASE challenge ranked by their Segment-based

error score. 66

viii

Chapter 1

Introduction

1.1 Project Introduction

The aim of sound event detection (SED) is to recognise distinct events in continuous acoustic

signals to which a label can be attached. For example, a given acoustic signal may be of an

elderly person at home and an event could be of a person falling. It is evident that a system

that can detect a person falling can help improve people’s quality of life [1]. The elderly

person would not be stranded on the floor for hours, and help could be notified immediately.

Unfortunately even with the current state-of-the-art sound event detection techniques [2], a

reliable system that achieves this is not yet feasible.

Further benefits of SED is that it aids other research areas. The field of acoustic scene

classification can benefit from the ability to use an event in the environment as a heuristic in

determining the scene. Embedded systems can be improved with a better perception of the

environment they are in by using their auditory features [3]. Further applications of sound

event detection include smart home devices [4], military hardware [5], indexing files with

audio [6] and even a smart phone application that monitors sleeping patterns [7] to name a

few.

However, sound event detection is a difficult problem to solve because a sound event will

rarely occur in isolation. For example, in a given segment of audio, a car could be passing by,

a bird could be singing and a person could be talking. Audio like this is known as polyphonic

or multi-sourced and is very challenging as it is difficult to find strong features that are not

corrupted by the mixture of events. The difficulty of the problem is increased by the fact that

the same event can sound very across different instances. For example, the amount of energy

at the start of plosive sounds like in doors slamming can vary a lot, changing its acoustic

characteristics. Another challenge in SED is handling context. Sound events do not sound

exactly the same through-out their life time. Imagine placing a glass in the drying rack after

washing it. The initial sound may be of the glass impacting with another glass, the glass

1

CHAPTER 1. INTRODUCTION 2

may then further slide into place generating another sound. These sounds may all be classed

as one sound event of “Washing Dishes”.

In 2016, the DCASE [8] challenge was introduced to encourage research in the field. The

organisers provided the TUT dataset [9] and invited researchers to take part in a challenge

to create a SED system to detect events in two scenes: a home and a residential area. This

project will use and extend the dataset provided and benchmark the performance of the

proposed system against the baseline system created for the challenge. The system will be

scored using the performance metrics [10] provided by the organisers in order for it to be a

fair comparison.

Sound event detection is a fairly well established field of research. Early techniques focused

on classifying events in isolation [11], i.e., the systems assumed only one event could occur at

a given time. These systems are known as monophonic. The real world, however, has a high

level of polyphony; most events do not occur in isolation, they occur with numerous other

events at the same time.

1.1.1 Handling Polyphony

A monophonic system will fail to detect two events of interest that occur at the same time;

this could be detrimental for some applications. There are two main approaches to solving the

polyphony problem: using multiple single label classifiers and using multiple label classifiers

[12].

Single Label A single label classifier can be trained for each of the events, creating a

different model for each type of event. Thus, single label classifiers can essentially only

classify one type of event. When a test signal is being classified, the frames can then be

tested against each of the classifiers. If several classifiers return a high probability of the

frame belonging to their particular class then the data is assigned to those classes. This

approach was used in [13].

Multiple Label The next approach involves training a classifier with an output vector

(x0, x1, x2, · · · , xn)T where n is the number of classes. The value of each element can be

either 0 or 1 depending on if the event is present, or a confidence value between 0 and 1.

For example, an ideal classifier for the data in figure 1.1 would be a three-class classifier and

would return the vector (1, 1, 0)T at time t0 and (0, 1, 1)T at time t1 assuming the dimensions

of the vector as “People walking”, “Car passing” and “Bird singing” respectively. This

approach was used in [14] and [15] and was successful.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Diagram showing how different events can occur at the same time. People walking
and car passing occurs at the same time at t1 and car passing and bird signing occurs at the
same time at t2.

1.1.2 Handling Context

When determining an event, knowing what has occurred prior to the event helps classify the

next event more accurately. A common approach to add this contextual information is to use

a Hidden Markov Model (HMM) [16][17] which uses a Finite State Machine with transitions

which have associated probabilities. Some events are more likely to keep occurring once they

are in an active state. “Washing dishes” is one such event; a person does not normally wash

dishes for a fraction of a second.

Another approach to add this contextual information is to concatenate the feature vectors of

the previous n frames when classifying an event, this was used in [18] and [13].

More advanced modern techniques include using a Recurrent Neural Network [19][20] which

use the current frame as well as weighted inputs from the previous time step as inputs in the

network.

1.2 Aims and Objectives

The project aims to fulfil the following aims and objectives, the project’s main aims are 1

and 2, however in order to achieve these objectives 3 and 4 must also be achieved.

1. Experiment with extracting useful features from audio signals that are not commonly

used in this problem domain.

2. Construct data augmentation techniques to artificially increase the limited data available

in this field while being precautious of mismatch in the process.

CHAPTER 1. INTRODUCTION 4

3. Establish an extensible sound event detection (SED) framework to allow for experiments

to be easily carried out.

4. Develop an online system to run and compare sound event detection systems with audio

uploaded from a user.

Features used in SED systems are very uninspired with Mel-Frequency Cepstral Coefficients

(MFCCs) being the most popular choice. Given that sound events are complicated signals

that can contain multiple different events at the same time strong features are required for

an effective performance, this is why this is one of the main research topics of the project.

As well as this, the amount of data available in the field is very limited compared to other

fields such as automatic speech recognition. A lack of data makes it difficult to create robust

SED systems as some events could have very few instances in training, which can make it

difficult to classify unseen data.

1.3 Overview of the Report

Chapter 2 provides the background material for creating a sound event detection system,

which includes the fundamentals of signal processing and the challenges in the field and how

these are being solved. The chapter then goes onto explain the literature of feature extraction

and data augmentation techniques, creating a good foundation for the following research.

Following this, in chapter 3 the visualisation tool that has been created to better understand

the performance of a SED system is discussed. The chapter details the requirements for

the tool, the design and how the final result was achieved. The report then continues on to

describe the baseline system in chapter 4. This chapter details how the MFCC features are

implemented as well as the underlying classification system and then goes into detail about

how the system was re-engineered into a better framework for experiments. The following

two chapters, chapter 5 and 6 describe the main experiments of the project. In chapter

5 the acoustic feature experiments are explained. Different features are experimented by

firstly extending the MFCC features used in the baseline system by simply concatenating

different features onto the existing feature vectors. The better performing features are then

combined together in an attempt to create an overall better performing system. In chapter

6 the work in chapter 5 is continued with experiments with data augmentation. Various

augmentation techniques are explored by augmenting the audio in the frequency domain and

the time domain. The effect of the augmentation on different features is assessed to see

how augmentation improves or worsens the results with different feature types. The various

augmentation techniques are then combined to see how the different augmentation techniques

complement, or alternatively, conflict with each other. Finally, using what was learnt in these

experiments, a combined best system is created, which is then compared against the baseline

system on unseen data using the optimal configurations for the two systems.

Chapter 2

Literature survey

This chapter aims to provide the background information for creating a sound event detection

system. It begins by describing the fundamentals of processing audio for sound event detection,

explaining how useful information can be retrieved from an audio signal. The chapter goes

on to describe the literature for feature extraction and data augmentation which will be the

main focus for the project. The chapter then concludes with a discussion on evaluating SED

systems. This is shown in two ways, firstly using formal methods by using F-Score and Error

Rate to give a quantifiable measure, and then by exploring graphical systems which visually

represent the output labels given by a sound event detection system. This can be used to

better understand the types of mistakes the systems are making and to give a more subjective

evaluation of performance.

2.1 Sound Event Detection Background

2.1.1 Signal Processing

Audio is a continuous signal. In order to capture this, the signal needs to be digitalised; this

is achieved through sampling. A standard sample rate is 44.1 kHz which means that for every

second of audio there have been 44100 samples recorded. To detect audio events, the samples

are grouped into frames; these frames normally contain 40 ms worth of samples. This frame is

then put through a classifier, where it would be assigned a label. The frame is moved along,

usually by 20 ms [21] or 50% the frame size; this is known as the hop length. The new frame

is then classified. This process is repeated until all the data has been completely classified.

The last frame is padded with zeroes if it does not line up exactly with the audio. Between

some frames of an event there may be no distinguishing features, as happens with footsteps,

where there is a no distinguishing sound between steps. To solve this issue, the classifier

needs to either use the context of the previous frames or the frames need to be smoothed in

5

CHAPTER 2. LITERATURE SURVEY 6

a post-process stage [18], where smoothing fills in the gaps between labels if they occur close

enough.

Analysing audio in the frequency domain through framing can cause unwanted side effects.

The Discrete Fourier Transform (DFT) [22] is used to transform a signal from the time

domain to the frequency domain by assuming the signal in that frame is periodic. This is

because all periodic signals can be represented as an infinite sum of sinusoidal components.

In practise, infinite components are not possible; therefore a finite set of components need

to be chosen, usually 2048. The number of components are usually a power of two as this

allows for optimisations with the Fast Fourier Transform (FFT) implementation. When using

2048 components, the actual frame size is around 46.6 ms (2048/44100) worth of samples;

this also shows the trade-off between time and frequency resolution. The more components,

the better the frequency resolution, except with the downside of a poorer time resolution.

Each component consists of a real sine wave and an imaginary cosine wave, which can be

compressed using Euler’s identity i.e., eiθ = sin(θ) + icos(θ). Formally the DFT is defined

as:

Xk =
1

N

N−1∑
n=0

xne
i2nk n

N for K = 1 · · ·N

Where N is the total number of samples in the frame (e.g 2048), xn is sample n in the

time domain signal x and k is number of cycles that component has in the frame i.e, the

frequency. Therefore, using a 2048 component DFT on a time domain signal will result in

a 2048 element sized complex vector. The first component X0 indicates the average energy

in the signal i.e., X0 = 1
N

∑N−1
n=0 xn. For each complex component the absolute value |Xk|

is the amplitude of the frequency k and the argument arg(Xk) is the phase of frequency,

i.e., the shift. The frequency components are indexed from 0 to 2047. To calculate their

corresponding frequencies in terms of audio they need to be converted with respect to the

sample rate the audio was captured at e.g., component 10 for a sample rate of 44.1 kHz

corresponds to 215.3 Hz (10× (44100/2048)), Nyquist theorem [23] states that the sampling

rate must be at least twice the maximum frequency, therefore only components up to 1024

(22050 Hz) are kept. More detail on this is specified in the description of the implementation

of the baseline system in chapter 4.

For the DFT to work, the signal needs to be statistically stationary. This means that the

frequencies that make up the signal do not change over time. This is clearly not the case for

a complicated sound, such as a sound event which varies over time. However, it is assumed

to be quasi-stationary, that is, over a short period of time the signal is stationary. In practise

this can cause issues; the maths behind the DFT assumes the signal in the frame repeats

infinitely in the future and in the past in the exact same way it appears in that frame [24].

In figure 2.1 a simple sinusoid wave is used to demonstrate the discontinuity caused by this

assumption. Discontinuities cause issues because frequencies can bleed into other frequencies,

CHAPTER 2. LITERATURE SURVEY 7

Figure 2.1: Diagram showing the discontinuities caused by framing a signal. The framed
signal is assumed to be repeating infinitely to the left and to the right.

creating frequencies which are not actually present. To fix this issue a windowing function

can be used. Windowing functions dampen the start and end of the frame to make the

repetition free of discontinuities The Hamming window [25] is the most common windowing

function. The Hamming window is defined with the following formula, where N is the width

of the window and n is the current sample index in the window:

w(n) = 0.54− 0.46 cos

(
2π n

N − 1

)
An example of this windowing has been generated and displayed in figure 2.2. The example

shows a sine wave that does not complete a full cycle. The sample is assumed to repeat

like this and the discontinuity can been seen. The Hamming window that will be applied to

the first frame is shown in the centre of the image. The final image on the right shows the

new dampened signal and the repeated frame. The discontinuity reduction between the two

frames can clearly be seen, along with the distortion created.

In the baseline implementation, each frame is 40 ms of the audio which is then padded with

0s to be 46.4 ms long (2048 DFT components); these resulting frames are then processed.

2.2 Structure of Sound Event Detection Systems

Every sound event detection system works roughly in the same distinct stages. The flow of

the stages are illustrated in figure 2.3. The blue procedures in the diagram represent the

main focus points of this project.

The organisers of the DCASE challenge provided baseline Gaussian Mixture Model systems

written in Python [13] and MATLAB [26]. The baseline systems were made for the competition

and provided useful functionality such as automatically downloading the dataset and caching

the progress of the system when it is running. However this system is quite rigid and it is

not flexible for experiments outside of the challenge’s constraints.

CHAPTER 2. LITERATURE SURVEY 8

Figure 2.2: Simple plot showing a signal before and after windowing. The image on the
left shows a shifted sine wave that does not complete a full cycle. The image shows the
discontinuities when frame 1 is assumed to be repeated in frame 2. The image in the middle
shows the Hamming window that will be applied to frame 1. Finally the image on the right
shows the sine wave in frame 1 after an element wise multiplication; the new frame is then
repeated in frame 2. The image clearly shows the new distortion created from the windowing,
however the discontinuity between the frames has severely reduced.

Dataset The starting point of a SED system is the dataset. If the training data is not very

good it does not matter how good the other components are. Also, if there is not much data

to train the system on, the system will struggle to generalise well. Datasets can be created

by recording real life audio, which will of course produce the most reliable data. The dataset

can also be extended in artificial ways, such as augmenting the existing data or simulating

new data through combining isolated instances of sounds and placing them into a scene.

Pre-processing Pre-processing involves removing data from the audio that is of no use

and will affect the classification performance negatively; this stage is often ignored as robust

classifiers should be invariant to such differences in the audio. However is has been shown to

be effective in [27] where removing noise from the audio was used.

Feature Extraction Feature extraction is needed by all the systems. This stage involves

finding useful properties in the data that can distinguish sounds with different labels. This

will be one of the main focus points of the project as most modern SED systems do not

experiment with many different feature types.

Classifier The classification stage can be implemented using a variety of different techniques.

A classification system can learn from labelled data; this is known as supervised learning.

Alternatively, it can learn from unlabelled data which is known as unsupervised learning. As

the labelled TUT dataset will be used in the project, a supervised method will be used for

classification. In particular a Gaussian Mixture Model (GMM). The GMM is a distribution

CHAPTER 2. LITERATURE SURVEY 9

Figure 2.3: Typical stages of a SED system, starting with pre-processing and ending with
post-processing. The results are then evaluated to judge the performance of the system.

that is learnt in an unsupervised manner, however the overall classification procedure is

supervised as a different model will be trained for each label.

Post-processing Classification systems are not perfect and some of their mistakes can be

eradicated by using some simple techniques, such as removing events that the system detected

to be too short to be real [13] [18]. The systems entered into the DCASE challenge often

used hard-coded knowledge for their post-processing techniques, rather than learning from

the training data.

2.3 Feature Extraction

The features chosen to be used in classification can greatly affect their performance as they

are used to distinguish different sound events. There are three main types of features that

can be used in sound event detection. These are: Spectral (Frequency Domain), Temporal

and Spatial.

2.3.1 Spectral Features

For sound event detection the most common features used are Mel-Frequency Cepstral

Coefficients (MFCC) [28]. They are used to smooth the spectrum; this is normally used

in an attempt to model the vocal tract of a speaker. This focuses on what is being said

rather than how it is being said. This property makes them an odd choice to be the most

popular feature in sound event detection, this is because the audio source is a scene made

up of many sources and not a speech signal. MFCCs throw away a lot of information to

CHAPTER 2. LITERATURE SURVEY 10

achieve smoothing, such as high frequency sounds like noisy fricatives. Noise can be useful

when determining the class of an event. For example, object rustling and water tap running

are very noisy sounds. Additional features can be generated by using the previous frames.

This is achieved through using the differential (∆) and the acceleration coefficients (∆∆)

of the MFCCs. These indicate how the features are changing with respect to time. The

lack of creativity in the features used in the DCASE competition and sound event detection

in general is an area where all the systems could potentially improve. However MFCCs do

seem to perform well and they are also an attractive feature choice because they are very

decorrelated making them ideal for the GMM based classifier. The project aims to see if they

are valid to be the state of the art, or whether performance benefits can be gathered through

better feature choice.

Apart from MFCCs, other spectral features are possible to extract. Task 1 of the DCASE

challenge (Scene Classification) had participants which used a larger range of different features.

For example in [29] spectral flux and centroid were used in the scene classification part of the

DCASE challenge. Centroid indicates the ‘Center of Mass’ of the spectrum and flux measures

how quickly the power spectrum changes between frames. Additionally Rolloff was used in

[30] along side other features such as flatness and energy. Other spectral features include,

Slope, Spread and Sharpness of the spectrum, these all describe different properties of the

spectrum.

2.3.2 Temporal Features

Another area of feature extraction and where the entrants of the DCASE failed to take

advantage of was using temporal features. Most of the systems entered used spectral features,

neglecting the time domain. Simple features such as the zero crossing rate [31] can aid in

differentiating events. Zero crossing rate is the rate at which a signal’s value changes sign. It

is normally used in determining whether a frame of speech is voiced or unvoiced. However,

it could be used in sound event detection. For example, a noisy signal such as a car engine

will have a high zero crossing rate. The scenes in the dataset are very noisy in general, this

means that the zero crossing rate may be high most of the time during the scene, which is a

downside to this feature.

2.3.3 Spatial Features

One entry in the DCASE competition took advantage of the fact that the audio recordings

were captured on a binaural device [20]. They used spatial features to aid classification in

a polyphonic environment. If two sounds come from different parts of the room, they are

likely to be separate events. The spatial feature they used was time delay of arrival (TDOA)

which works in the same way humans determine the location of the source of a sound. TDOA

uses the fact that a sound will reach one channel before the other channel. If the human

CHAPTER 2. LITERATURE SURVEY 11

body detects a sound in their right ear before the left then it is likely to be coming from the

direction to their right.

2.4 Data Augmentation

As has been stated before, the lack of data in the challenge was a major issue in the challenge.

The entrants of the challenge did not take great advantage of the option of augmenting the

given data to artificially create more data; thus data augmentation is another potential area

where improvement is possible. The performance gain from augmentation will vary between

the different classifiers. Ideally a good classifier should be invariant to small changes and

would therefore not benefit much from data augmentation. Machine learning systems are

treated like black boxes, it is not possible to completely understand what the system has

learnt. However if data augmentation is used then certain characteristics of the audio can be

learnt by the classifier on purpose. For example the fact that pitch of certain sound event

types can vary slightly can be learnt by the classifier by simply training the classifier on the

same samples with a augmented pitch, this it called pitch perturbation.

2.4.1 Audio Mixing

Mixing the sound recordings together was used in [32], however it was not very effective

with the Convolutional Neural Network (CNN) classifier implemented. Their systems learnt

the effect of simultaneously occurring events; this is the opposite approach to [33] which

attempted learning sounds in isolation. Event mixing allows for the classifier to learn the

features that are more important for that sound event. This is because the classifier will

learn if there is no correlation between certain features when the sound event is mixed with

other events and the classifier will learn the more important features through their being

correlation between the event in isolation and the event when mixed with other events. For

example, the sound of rustling is noisy. If a frame contains just rustling there will be a high

zero-crossing-rate. If the event is mixed with something such as an object impact, the frame

will still contain the high zero-crossing-rate, indicating it is a useful feature.

2.4.2 Vocal Tract Length Perturbation (VTLP)

Another spectral augmentation technique used is Vocal Tract Length Perturbation (VTLP).

This is a technique used in automatic speech recognition to create speaker independent

systems. It is derived from Vocal Tract Length Normalisation which aims to normalise

the signal to be speaker independent. In [34] the experiments showed that VTLP improved

the performance for speech recognition. It has also been shown to improve performance in

sound event detection in [35]. VTLP can be used to create sound events that are similar to

CHAPTER 2. LITERATURE SURVEY 12

the original sound event by augmenting the size objects involved. For example the sound of

an object hitting a table could be augmented to sound like an object hitting a slightly larger

table.

2.4.3 Speed Perturbation

Speed perturbation was also used to augment data in [32]; a small improvement was achieved

through this. Speed perturbation involves speeding up the data and slowing it down through

re-sampling the audio. When performing this procedure, the pitch is also increased as a

side-effect. However there are techniques to mitigate this effect [36], to create more natural

sounding audio.

Along with using the existing data, more data can be added to the dataset. This data will

need to be simulated, such that it sounds like it was produced in the same room as the

other events by using the reverberation characteristics of the room that the other events were

present in.

2.5 SED Evaluation

What makes a good SED system is quite a subjective task. One might want a SED system

to only detect events when they occur and any mistakes are critical. On the other hand a

SED system detecting mistakes may not be critical as long as the important events are being

detected. An analogous to this is with cancer screenings. Mistakenly detecting someone has

cancer will only cause unnecessary worry. It is far more critical if someone with cancer is

not detected. The DCASE challenge provided resources and constraints for creating a SED

system and then presented the evaluation metrics to use.

2.5.1 DCASE Challenge

In 2013 [37] a group of researchers created the DCASE challenge to encourage research in

sound event detection. The challenge was a success and led to another challenge in 2016 [8].

The organisers of the competition considered the opinion of the research community to shape

the rules of the competition in order to better suit the current research interests in the field.

The challenge involved participants creating systems to detect acoustic events in two different

locations: a home and a residential area. For the competition, the organisers provided the

TUT [9] dataset for the participants to train their systems on as well as a program to evaluate

their systems objectively [38].

The systems were then judged by similar data, recorded using the same hardware. The

competition had strict rules stating that the systems entered into the competition could only

CHAPTER 2. LITERATURE SURVEY 13

be permitted to use provided data to train their systems. However, augmenting the provided

data was allowed.

The competition had unrealistic constraints. The participants were forced to augment individual

data samples to create variability in the dataset. In a real-life scenario, more data would be

gathered before augmentation. The organisers had to put this constraint on participants to

ensure focus on the performance of the systems rather than the amount of data they could

gather.

2.5.2 SED Metrics

To judge a sound event detection system a quantitative measure is needed. For the DCASE

challenge, two types of metrics were used: event based and segment based [10]. The segment

based metrics will be used to evaluate the proposed system.

The systems are scored based on their output labels. The labels are produced by creating a

text file in which each line has the onset, offset and event name respectively, separated by a

tab character. Both metrics used this output file.

Figure 2.4: Diagram showing segment-based evaluation metrics. The solid red box indicates
a segment as being incorrect and the green boxes indicate a segment as being correct.

Segment Based Metric For the segment-based metric, the labels are broken down into

1 second segments. If an event occurs at any point during this 1 second segment then that

segment contains that event.

In figure 2.4 an “Object Impact” event is used as an example. The event occurs between

around 3.5 s to 7.5 s. This means the 4th-8th segments contain the event, indicated by the

solid green squares in the diagram.

CHAPTER 2. LITERATURE SURVEY 14

Event Based Metric The event based metric evaluates the performance of a system by

considering the labels event by event rather than second by second. An event is considered

to be correct if the onset is within 200 ms of the correct onset and the offset is within 200 ms

of the correct offset or within half the duration of the event for longer events.

Figure 2.5: Diagram showing how event labels are evaluated event by event

Figure 2.5 shows how events are evaluated in the event based metric. The event “Object

impact” is labelled as having occurred between the timestamps 3.4 and 6.4 seconds. The

first system correctly classified the event as both the onset and offset were within the 200 ms.

System 2, however, failed to detect the event because the onset was too late. This metric is

perhaps too harsh on the second system. The system still managed to detect the majority of

the event; the segment based evaluation metric would have rewarded the system for that.

The best metric to use depends on the application of the desired system. For a system where

detecting the exact time an event occurs is important, using the event based metric would be

best. A system where detecting the rough duration and the rough start time is good enough,

would benefit from the segment based metric. For the DCASE challenge, they used both

types of rating metrics, which was quite a bizarre choice. It would have been better to choose

one metric. Using both metrics resulted in entrants performing well for one metric and not

so well for the other metric, as they optimised their particular system for that metric. This

made it difficult to select an overall winner.

Segment based and event based metrics are different perspectives on looking at the data.

Both these perspectives can be used to calculate scores. The scores that were decided by the

organisers were F-Score and Error rate.

CHAPTER 2. LITERATURE SURVEY 15

Error Rate This score evaluates a system based on how many errors it makes. The lower

the score, the better the system has performed. A system can easily get the good error score

of 1 by not labelling anything, making it difficult to interpret, therefore it should be used

with a complementary score.

ER =
substitutions + deletions + insertions

No. of events to detect

Where substitutions are the number of correct detections with incorrect labels. Deletions are

failing to detect an event that occurred and insertions are detecting an event that did not

occur.

F-Score This score uses the harmonic mean of precision and recall, where precision is the

percentage of events detected that are correct and recall is the percentage of the correct

events detected.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-Score =
2 · Precision ·Recall
Precision + Recall

Where TP is the total number of True Positives, FP is the total number of False Positives

and FN is the total number of False Negatives.

The organisers of the challenge provided the SED Eval program [38] to automatically evaluate

the systems using these metrics. For this project the 1 second segment metrics will be used to

evaluate and compare the system. This is because it better represents the overall performance

of a system; it was also the preferred metric by the organisers.

Please note the difference in the similar sounding terms sample, frame and segment. A

sample of audio is a snapshot of the continuous real world audio signal. These snapshots

typical happen 44100 times a second. A frame is a group of these samples in a usually 40ms

block, often processed with a windowing function. The underlining classification system being

used works with features extracted from these frames. This means that the classifier learns

from a dataset of frames, therefore when the term data sample is used, this refers to a frame

and not an individual sample in the original audio file. Finally the term segment is only

used in evaluating a system. The decisions of the SED system are broken down into 1 second

segments and then judged using the metrics that have been just discussed.

CHAPTER 2. LITERATURE SURVEY 16

2.6 Sound Event Detection Visualisation

Numeric measures are useful for determining how well a system is performing objectively.

However, being able to see how well a system is performing using a visual system will allow

specific weaknesses of the system to be seen, such as graphically being able to see an event

always detected late. Heittola created a Flash visualisation tool [39] to graphically render

the results of their experiments. The system only works with three predetermined scenes but

provides a lot of tools to analyse results. The waveform and the current labels being detected

can be seen to aid seeing how the system can be improved. This improvement can then be

measured objectively using an evaluation metric. A screenshot of the tool is displayed in

figure 2.6.

Figure 2.6: Screenshot taken from the flash visualisation tool created by Toni Heittola,
demonstrating the results of classifying events in a restaurant.

Heittola has also created another sound event detection visualisation tool called sed vis [40].

This tool is a Python module that was recommended by the organisers of the DCASE

challenge. Compared to the flash visualisation tool, this one is more flexible; it allows for any

audio file and two annotation files to be selected: the correct labels and the system’s labels.

However this tool lacks some fundamental features such as being able to pause and seek to

specific locations in the audio. A screenshot of the tool is displayed in figure 2.7.

CHAPTER 2. LITERATURE SURVEY 17

Figure 2.7: Screenshot taken from sed vis Python library

2.7 Summary

In this chapter the techniques to go from a noisy continuous signal into useful features was

explained. The chapter began by explaining how the audio is grouped into frames and how

the Discrete Fourier Transform is used to turn the time domain signal into the frequency

domain. The chapter then went onto explain how a complete sound event detection system

can be created, highlighting all the key stages such as: the dataset, pre-processing, feature

extraction, classification, post-processing and evaluating. The chapter then went onto explain

further the literature of the main focus points of the report, feature extraction and data

augmentation. Then the chapter then concluded with further details of the DCASE challenge

and the performance metrics that will be used for this project.

Chapter 3

SED Visualisation

This chapter is a self-contained description of the SED Visualisation tool that has been

developed to aid displaying the performance of SED systems. This tool will be used for

a deeper analysis of the systems, further than what can be achieved through looking at

performance metrics. The aim of the SED visualisation tool is to graphically display how

well Sound Event Detections systems are performing by allowing the user to listen to the

audio and watch the labels appear in real time. The system aims to have a low barrier to

entry, in particular to allow users to compare these systems with no installation; the web is a

great platform for this. A frontend application will be created to visualise the events, while

the labels will be generated by running an audio file through the SED systems on the server.

The chapter begins by setting out the requirements of the tool, followed by the design and

then concludes with the implementation created.

3.1 Requirements and Analysis

The system will require two endpoints to function, a frontend and a backend. The frontend is

an interactive web application which allows the user to upload an audio file and select which

Sound Event Detection system should be evaluated. The backend system needs to store the

uploaded audio file and then run the audio file using the selected Sound Event Detection

system. After classification the resulting labels will be returned to the frontend which will

display the results to the user. The user will then be able to play the audio file and then

watch the labels of the classifiers scroll right to left as time passes giving the user an intuition

of how well the system is performing. The user will also have the option to upload a labels

file in the format specified by the competition organisers. The visualisation tool should fulfill

the following list of requirements:

1. The user should be able to upload an audio file.

2. The user should be able to select which SED systems should be run on the file.

18

CHAPTER 3. SED VISUALISATION 19

Figure 3.1: Mockup of the design of the main page of the visualisaion tool. The user has
uploaded an audio file and selected a SED system. The mockup shows that at this current
timestep the event ‘Label 2’ is currently active. ‘Label 3’ will soon be active at the end of
this event.

3. The server should run the selected SED systems on the uploaded files.

4. The user should be able to see the labels relative to the time position of the audio

player.

5. The user should be able to seek to different positions in the audio.

6. The user should should be able to play and pause the audio.

7. The user should be able to remove a SED system from being displayed.

8. The server should store the uploaded audio files for reuse.

9. The user should also be able to interact with the audio through clicking on a waveform.

10. The user should be able to optionally upload a labels file.

3.2 Design

Allowing a low barrier to entry is a key requirement of the tool, because of this it is important

that the user is able to view the application without uploading any files. On the homepage

the user will be presented with the option to upload their own file or to use an example file

already on the server. Once uploaded the user will be redirected to the main part of the

application. In figure 3.1 a mockup of the main page is presented. The user will be able to

see a soundwave at the top of the page - this is useful to allow the user to quickly see points

CHAPTER 3. SED VISUALISATION 20

Figure 3.2: Diagram indicating the flow of data between the client and the server. The client
starts by requesting the labels for the audio file with the specified ID using the specified
classifier parameters. The server then runs the classifier and returns the labels.

of interest in the audio, such as seeing spikes to locate loud plosive sounds. Underneath this

are the controls for the audio player. Finally below this is the main component of the page,

the labels slider. The currently active events are coloured yellow while non-active events are

coloured blue. As the audio is played the events segments slide from the right to the left.

The interaction between the frontend of the application and backend of the application is the

most key part of the architecture of the visualisation tool. The flow of data is depicted in the

diagram in figure 3.2. Once a user has uploaded an audio file it will be stored on the server

and is given a unique code called the audioID. When the frontend wants to run a classifier

on the audio file the frontend will pass the audioID to the server along with the parameters

of the classifier. The parameters of the classifier will include data such as the number of

components used in the GMM, the features to extract from the data and what data the

classifier was trained on, these parameters will be explored further in the following chapters.

On the server, the server will retrieve the corresponding classifier to the specification given

by the user and retrieve the audio file corresponding to the audioID. From this the server

will then run the classifier using the audio file. The classifier will output the labels; this is

then relayed onto the frontend.

3.3 Implementation

The frontend of the application is a web application written mainly JavaScript. The JavaScript

framework React.js was used to speed up the development, allowing robust and reusable

components to be constructed. The server side of the application was written in Python

using the framework Flask. Writing the server side code in Python allowed the classifiers to

CHAPTER 3. SED VISUALISATION 21

be easily be integrated into the application as they are simply imported as a module. A live

version of the application is available at https://sedvisualise.com. Instructions on how

to install the application locally are located in the appendix.

The user is first presented with the option to upload an audio file, this page is shown in figure

3.3. Currently the only supported file type is wav. The user also has the option to use an

example file.

Figure 3.3: Homepage of the application, the user has the option to upload their own audio
file or to use the example file on the server.

When an audio file has been uploaded to the server a random code is generated to identify the

file; the file is then stored in a folder with the name being that random code. The user is then

redirected to /play/[audioID] to view the main part of the application, this link is shareable

allowing users to share their results easily. This page is shown in figure 3.4. In this image a

labels file has been uploaded and the events are shown in the top slider. The baseline system

for the home scene is being displayed below this. Immediately from inspection it can be seen

that the baseline system is able to detect the event of a tap running really well. The sound

of dishes were also detected but not for the full duration. The sound event of cutlery was

completely missed by the baseline system. This is quite understandable as the event sounds

very similar to dishes. Just from this quick look the value of this tool can be seen as already

potential areas of improvement can be seen. Viewing the F-Score and Error Rate does not

give this kind of insight. A design decision was made to only show events in the slider that

the system detected in the whole of the audio file. This is the reason why the cutlery event is

not visible at all in the baseline system slider. By doing this space has been saved to allow for

more classifiers to be compared at once. The user is also able to seek through the audio both

by interacting with the waveform and through using the audio controls below the waveform.

The user can also remove systems that have been added to the page, which concludes that

all the requirements set out in the first section have been met.

https://sedvisualise.com

CHAPTER 3. SED VISUALISATION 22

Figure 3.4: Main part of the application. The user has uploaded an audio file and the
corresponding labels file. The baseline system has been selected and run on the audio file
and the results are displayed below the labels file. The tool shows the system performing
really well for the water tap running event and not so well for the other events.

3.4 Summary

In this chapter the visualisation tool that has been developed to aid the understanding of

the performance of SED systems has been explored. The requirements were set out to begin

with to establish what was needed in order to make the tool successful such as being able to

easily upload audio files without any setup as well other basic functionality which other tools

lacked such as the ability to seek through the audio. After this the design of the system was

discussed and how the frontend application interacts with the backend system. Finally the

chapter concluded with explaining how the final solution was implemented using React and

Flask.

CHAPTER 3. SED VISUALISATION 23

Figure 3.5: The menu for choosing SED systems to run. In this version only two systems are
available. Once selected and confirmed the slider will be appended to the main page and the
corresponding labels will be shown.

Chapter 4

The Baseline System

The chapter begins with describing the TUT dataset that was provided for the DCASE

competition. The following chapters will build upon this dataset through augmenting the

data to artificially grow the number of samples, but to start with, what is currently available

is explored and the need for more data is emphasised. This chapter then describes the

baseline system that was provided for the competition. The chapter goes on to detail how

it was re-engineered to better fit future experiments. The following chapters will also build

upon this baseline system using novel feature extraction techniques, because of this it is

important to have a good understanding on the current level of performance being achieved

by the baseline system. This is why the chapter concludes with further experiments to detail

more specific performance achieved by the baseline system, than that was presented by the

organisers. These experiments also set the foundations to how the future experiments will be

carried out.

4.1 TUT Dataset

For the DCASE challenge the TUT dataset was provided by the organisers and will be used

as the baseline dataset for this project. The recordings were captured at a sample rate of

44.1 kHz with a 24 bit resolution using a Roland Edirol R-09 wave recorder [9]. The database

consists of 10 recordings inside of a home and 12 recordings in a residential area, each between

3 and 5 minutes long. Each of these recordings has a corresponding metafile which contains

the events and when they occurred. In the training data, the events do not necessary occur

in isolation.

The event labels were freely chosen by two research assistants. The most frequent labels

chosen by these assistants were chosen to be the target sound events and similar sounds were

grouped together. Due to using two lab assistants the resulting labels may be inconsistent

as this is a very subjective task. It is also very difficult for humans to detect more than a

24

CHAPTER 4. THE BASELINE SYSTEM 25

few events at the same time. Unlike synthesised data, it is difficult to have a reliable ground

truth.

The dataset is quite a small; therefore techniques discussed in chapter 2 will be used to extend

the dataset such as using speed, pitch and vocal tract length perturbation.

Figure 4.1: Frequency of the events in the TUT training dataset

The number of samples for each of the events in the dataset is not uniformly distributed. In

figure 4.1 it is clear that some events are more prominent than others. For example in the

home dataset “object impact” is by far the most common event, which is unsurprising as it is

a very generic label compared to something specific like the sound of a drawer. It is a similar

story with the residential area dataset with one event being more popular than the others by

some margin.

Figure 4.2: Duration of the events in the TUT training dataset

In figure 4.2 the average duration of all the events is shown. The chart clearly shows the

disparity in the two categories. The chart on the left shows that the events in the home are

far shorter on average compared to the residential area. The results of the challenge show

CHAPTER 4. THE BASELINE SYSTEM 26

that systems performed better on average for the residential area category. This is probably

due to long standing events being easier to detect. If an event occurs for a long period of

time the context of the previous frames can be used to detect the event. This is not the

case for short plosive sounds found in the home, which can be easily missed. The sound of

a cupboard is difficult to detect based on the previous frames. Another reason why systems

performed better in the residential area category could be because there are fewer possible

labels and less ambiguity. Most humans would struggle to tell the difference between the

sound of ‘dishes’ and the sound of ‘washing dishes’.

4.2 Feature Extraction

The only features used in the original baseline system were MFCCs. Using a Hamming

window and a frame size of 40 ms and a hop size of 20 ms. The frames were calculated using

a FFT with 2048 components. This results in a complex matrix S with the shape (1025,

number of frames). 1025 is used as just under half of the components are thrown away after

computing due to the symmetry caused by aliasing when sampling. This was implemented

using the Python library Librosa, using the Short-time Fourier transform function provided

by the library.

From the complex matrix S the power spectrum P of the signal is then calculated by P = |S|2.
A set of 40 mel filter banks are then created to give a matrix M with shape (40, 1025)

where 40 is the number of filter banks and 1025 is the number of DFT components. The

Librosa implementation that was used, normalises the traditional mel filter bank such that

the triangular filter banks have an equal area of 1 instead of an equal height of 1. The

difference is depicted in the image in figure 4.3.

Figure 4.3: Comparison of the filter bank created by Librosa (Left) and the filter bank
traditionally used (Right). The Librosa implementation is used in the baseline system
implementation.

The amount of energy in each filterbank for the power spectrum is then calculated by simply

multiplying the matrices MP resulting in the mel spectrum.

Suppose that an audio signal has some excitation to start the sound, which is then filtered

CHAPTER 4. THE BASELINE SYSTEM 27

by the cavity in which the sound was excited in, then the audio signal is simply the result of

the convolution of the source and the filter. A convolution is simply a multiplication of the

two signals (filter and source) in the frequency domain.

Because of this relationship and that the power spectrum is derived from the audio signal the

next step is taking the log of the power spectrum which turns the multiplications in frequency

space into additions in the log frequency space. In this space the high frequency components

represent the noise in the signal including the source of the sound i.e lots of small additions.

The low frequency components represent the shape of the filter.

The final step performed is taking the Discrete Cosine Transform of the signal to find the

frequencies that make up the signal, this is similar to taking the DFT of the signal. In the

baseline system’s implementation 20 Cosine components are used here. The resulting signal

is in the Cepstrum domain and the 20 coefficients for the Cosine components making up the

signal are the desired Mel Frequency Ceptstrum Coefficients, often in speech processing only

the first 13 of these components are used, however in the baseline system all 20 are used,

as a sound event is signal is being analysed and not a speech signal. The lower components

represent slower moving changes in the signal which describe more generic features of the

sound and higher frequency components represent more specific features for that particular

instance of the sound. The very first component represents the overall energy in the signal and

is removed in the implementation as it is considered not very useful, this leaves 19 features.

As well as the 19 MFCCs the speed and acceleration (∆, ∆∆) of the features are also

calculated. They are both calculated using a width of 9 frames. The ∆ values are calculated

using the following formula:

∆Ci,t =

∑N
n=−N n(ct+n − tt − n)

2
∑N

n=1 n
2

Where Ci,t is the value for coefficient i at time step t and N is the width. To calculate the

double delta value, instead of feeding the coefficient into the formula, the delta value is fed

in i.e, it is the derivative of the derivative. This was implemented in practise using the delta

utility function provided by Librosa.

Even though the first MFCC is ignored the ∆ and ∆∆ of the first MFCC is used as this does

carry useful information about the sound. This then results in a final feature vector with 59

features (19 + 20 + 20).

4.3 Normalisation

Features are not always on the same scale. This can cause issues when classifying samples,

using humans as an example this will be explained. Let their features be height and head

CHAPTER 4. THE BASELINE SYSTEM 28

size. If the two measurements are recorded using centimetres, then the amount the values

vary are clearly very different. Human head size will result in a few cms difference between

people, opposed to human height which can vary by more than 30 cm. let human samples

be plotted in a 2D space where the height and head size are the dimensions. If the distance

between the points are measured using Euclidean distance (`2 norm). The resultant distance

value will be more bias towards the change in height than the change in head size because

humans height vary more in cm than what their head size varies in cm. This can cause issues

because a change of 20 cms in head size is way more significant than a change in height by

20 cms, but would be considered identical in this space. To fix this issue the features are

normalised by using the mean and variance in the dataset. This issue occurs for all features,

including the ones used in SED, because of this the following formula is used to normalise

the value such that they are on an even scale:

f ′ =
(f −mean)

std

Where f is some unnormalised feature value, mean is the average value of the feature in the

dataset and std is the standard deviation of the feature in the entire dataset.

4.4 Classifier

The chosen classifier of the baseline system was made using multiple Gaussian Mixture

Models, in particular the Scikit learn implementation. The aim of this project is to explore

how novel features and data augmentation can be used to improve performance, therefore

the classifier will remain constant throughout the later experiments, however the classifier

used will be explained here for completeness.

A Gaussian Mixture Model works by the assumption that the data comes from a set of N

Gaussians. A weighted sum of the likelihood unseen data belongs to these Gaussians is used

to determine if the sample belongs to the distribution. A separate Gaussian Mixure Model

was created for each sound event label in the dataset. For the baseline system 16 Gaussian

components were chosen for every sound event label in the dataset. This could probably be

further fine tuned to use a different amount of components for each sound event type, as some

sound events have more variety than others, however this is out of the scope of the project.

Fitting the data to the distributions is an iterative process. The set of Gaussians are randomly

initialised in the feature space. The points are then adjusted using k-means clustering.

K-means is solved in an iterative process using Lloyds algorithm [41]. This is achieved by

iteratively updating the component centres to the centre of the closest points to them. Closest

points are defined in terms of the Euclidean distance (`2norm). After the points have been

initialised to a stable set of means, the main iterative process starts. This starts by first

finding the likelihoods that the data samples belong to each of the Gaussian components.

CHAPTER 4. THE BASELINE SYSTEM 29

The weights, means and covariance values of the Gaussian components are then tweaked to

improve these likelihoods, this process is then repeated further improving the likelihoods.

This algorithm is known as Expectation Maximization. In the baseline system this iterative

process is repeated 40 times.

Further parameters used in the baseline system includes using a diagonal covariance matrix

and enforcing a minimum covariance value of 0.001 to prevent overfitting [42].

To train the classifier a GMM was fitted for each of the sound events types, these are the

positive models. As well as the positive models, negative models were also trained. A negative

model is trained for each of the sound event types, these models fit all the samples that are

not that event.

Finally to determine the class of an unseen sample the ratio of the likelihood of the sample

belonging to the positive model and the likelihood of the sample belonging to the negative

model is calculated.

likelihood ratio =
positive likelihood

negative likelihood

Samples are not independent, they depend on the previous samples seen. Because of this a

mean smoothing window using the context of 1 second worth of samples is used to smooth

the likelihoods. The final likelihoods are then compared against a threshold value of 160,

if the likelihood is greater than this then that sample is classified as belonging to the class.

A sample can have a high likelihood of belonging to multiple classes, this accounts for the

polyphonic nature of the audio.

4.5 Post-Processing

Given that the samples are now classified, further post processing can clear up obvious

mistakes. In the baseline system errors are corrected by throwing away events that occur for

less than 100 ms and same event classes that occur within 100 ms of each other are merged

together.

4.6 Re-engineering the DCASE system

The Baseline system provided by the organisers was very rigid and difficult to extend in

a maintainable way. To allow for further experiments to be carried out, the system was

re-engineered with the aim of more maintainable code by breaking the code into components.

The original system was built by the organisers was very specific to the solution provided. By

recreating the system in a maintainable way, the experiments can more easily be reproduced

CHAPTER 4. THE BASELINE SYSTEM 30

and further extended by other researchers. For example the classification part of the system

is not a focus point of this project, however if someone wanted to continue this work with

a different classification system that should be easily achievable. It was also important to

maintain the integrity of the original system’s performance level, this was achieved and results

of those tests are shown in the appendix. The main component of the new architecture

is the SoundEventDetector class. This class joins together the different aspects of a SED

system discussed in the literature review, such as feature extraction, training and post

processing. The full relationship of the system is depicted in the class diagram in figure 4.4.

As shown in the diagram, the features being extracted by the system is are attribute of the

SoundEventDetector class. These features are looped through, the features’ extract method

is called and the resulting feature vectors are concatenated together. This architecture allows

for multiple combinations of features to be experimented with, in a maintainable way, unlike

in the previous architecture where a series of conditionals in an extract function would have

been required. In the class diagram only one feature has been shown, the Centroid. However

the other feature classes are just as simple, and they all inherit from the same Feature

base class. To run experiments the configurations of the experiments were defined using a

specified yaml file. The file contains information such as the configuration of the classifier e.g

the number of components, the features to extract and the cross fold validation information.

When the results are saved this file is saved a long with the results, to allow for experiments

to be easily reproduced later on.

The following features: Centroid, RMSE, Rolloff and Zero Crossing Rate were implemented

using the Python library Librosa [43]. The spectral features Centroid and Rolloff were

framed using a frame size of 40 ms and hop size of 20 ms using 2048 DFT components. The

components are then reduced down to 1025. The windowing function used was a Hamming

window. For the time domain features, the same frame and hop size was used as the spectral

features.

The remaining features of Flux, Sharpness, Slope and Spread the features were implemented

using the Python library Yaafe; parameters to frame the signal were the same as for other

features.

4.7 Experimental Setup

The dataset provided by the baseline system is quite small, because of this it is easy to

overfit. To ensure that the experimental scores are a fair reflection on how well the system is

actually performing, the same cross fold validation setup will be used that was provided by

the DCASE organisers. The crossfold validation works in 4 folds. For a fold the data is split

into 2 sets, one containing around 75% of the data and another containing the remaining

data, these sets of data are disjoint. The data is then trained on the section with around 75%

of the data and tested on the section with around 25%. For the next fold a different split of

CHAPTER 4. THE BASELINE SYSTEM 31

Components Substitutions Insertions Deletions Events ER

4 246 330 1109 1572 1.07
8 206 311 1166 1572 1.07
16 141 123 1269 1572 0.98
32 119 100 1334 1572 0.99

Table 4.1: The results for the baseline system in the home scene using a threshold of 150
showing the error rate and the parts that make up the error rate. The error rate reduced
with more components added. From the looking at the plots in figure 4.6, it can be seen that
this was the general trend.

data is used. After all the folds are completed the total True Positives (TP), False Positive

(FP), True Negatives (TN), False Negatives (FN) are calculated and then the corresponding

F-Scores and Error Rates are calculated. This is known as the micro average and is a better

reflection of the overall scored compared to averaging the F-Score and Error Rates of each

of the folds when there is an in-balance in the amount of labels between folds. The same

fold splits are used that were used in the baseline system as the organisers of the DCASE

challenge chose splits based on where and when the audio files were recorded and it was

recommended by the organisers to keep the same split.

4.8 Results and Discussion

The first set of experiments explore the performance of the baseline system in more detail.

Recall that the classification system relies on a threshold value to determine whether or

not the likelihood is high enough for the sample to be considered part of that class. If

this threshold is varied the F-Score and the Error Rate can be plotted against the threshold

creating a curve, this will allow the more general performance of the system to be understood.

Threshold values between 0 and 300 are used with a resolution of 1 experiment per 5 threshold

units. The experiments have also been repeated for different amounts of components to find

the significance of the number of components.

The graphs in figure 4.5 and 4.6 clearly show the disparity in the two scenes. The system

consistently performs a lot better in the Residential Area compared to the Home scene. The

main metric that the following experiments with feature extraction and augmentation will

try to optimise is the F-Score system however a low Error Rate ideally bellow 1 will also

be desired. The Error Rate on its own cannot be considered a good metric because this is

easy to optimise by being very cautious with decisions, which does not necessarily make for

a good SED system. Not detecting any events gives an error rate of 1. A system that is able

to detect lots of events, which however gets lots of FP is probably a better system than one

that does absolutely nothing. This makes the error rate quite difficult to interpret.

Using different numbers of components gave interesting results. In figure 4.6 the higher

CHAPTER 4. THE BASELINE SYSTEM 32

Components TP FP FN Precision Recall F-Score

4 217 576 1355 0.27 0.14 0.18
8 200 517 1372 0.28 0.13 0.17
16 162 264 1410 0.38 0.10 0.16
32 119 219 1453 0.35 0.08 0.12

Table 4.2: The results for the baseline system in the home scene using a threshold of 150
showing the F-Score and the components that make the calculation. As more components
were added the F-Score dropped, this is because the decline in the recall was more significant
in the calculation than that of the precision because of how low the recall was already.

amount of components gave the better error rate and in figure 4.5 the lower amount of

components gave the better F-Score. To better understand the reason for this in tables 4.1

and 4.2 a threshold of 150 for the home scene has been used. The parts that make up the

F-Score and Error Rate have been shown to try get a better understanding for the cause

for the differences in score. From looking at the tables, the error rate shows how poorly

a system is doing and does not really give much indication of how well a system is doing,

F-Score however does do a better job at showing how well a system is doing. For example the

4 component mixture found the most events but also made the most mistakes. The F-Score

did not punish the 4 component classifier as much as the error score did. This is because

the F-Score focuses on trying to get a good balance between precision and recall. Looking

at the 32 components the precision increased a lot, 29.6% relatively to the 4 component

GMM. However, looking at the recall this difference is dwarfed, the recall almost halves.

This relative difference is not really accounted for with the error rate. The sound events

in scenes are very sparse which means it is far easier to make a mistake than it is to get

an event correct. In order for a system to improve at detecting events, it will make more

mistakes. This does not mean the system is getting worse. The GMMs with the lower number

of components managed to retrieve more correct events because the Gaussian’s formed are

wider and more general than that of a GMM with more components. Having wider and more

general Gaussians means more events will have a likelihood to belong to the Gaussians of

the mixture, compared to a GMM with lots of highly specific Gaussian. With highly specific

Gaussians less events will have a high likelihood to belonging to these Gaussians, however

when they do the probability of them actually being correct will be greater than that of the

less specific ones. At this point it is difficult to tell the optimal number of Gaussians for this

dataset however 8 or 16 components seem likely.

Finally to give a visual understanding of how well the system performed, screenshots of the

visualisation tool are displayed in figure 4.7 and 4.8. This instance of the SED system is

using the 16 components chosen by the organisers originally. The screenshot on the left

shows the system performing quite well. There are a few false positives, such as detecting

object impacts and the sound of cutlery. However other events such as one object impact,

people walking and the sound of water tap running were quite well detected. On the other

hand on the right shows the system performing not so well. An (Object) Snapping event has

CHAPTER 4. THE BASELINE SYSTEM 33

been missed as well and 3 false positives.

4.9 Summary

In this chapter the baseline system that was provided by the competition organisers has been

dissected. The implementation of the MFCC feature extraction used in the baseline system

has been explained as well as the classification system used. A discussion of how the system

was re-engineered to allow for an extensible framework to be created. Following this the

performance of the baseline system has been analysed including the two metrics that were

chosen for the competition. It was decided that the F-Score showed a better representation

of the overall performance of the system. However the error rate should not be neglected

completely, as a high error rate can indicate a poor performing system, even if the F-score is

good. It will be desirable to have an error rate value below 1.

CHAPTER 4. THE BASELINE SYSTEM 34

Figure 4.4: The class diagram demonstrates how the components in the system are connected.
The core of the framework is the SoundEventDetector class, the rest of the application are
modular components. A user of the framework can supply 1 or more Feature classes which
are fed audio files. The user supplies a Classifier, this is given a dictionary of matrices, where
the key is the corresponding audio file. The rows of the matrices are features and the columns
are the frames. The Classifier will then return a dictionary with the key being the audio file
and the value being a matrix of labels at each frame. The user can also optionally provide
PostProcessors to tidy up mistakes at the end. This framework allows future work to be
carried out such as replacing the classifier or experimenting with different post-processing
techniques.

CHAPTER 4. THE BASELINE SYSTEM 35

Figure 4.5: Results from running the baseline using multiple components. A threshold value
between 0 and 300 has been used with a resolution of 1 experiment per 5 threshold units.
Using more components lead to a slightly decreased F-Score.

Figure 4.6: Graphs showing the general performance of the baseline system in the two scenes
through looking at the error rate. The experiments have been rerun several times using
different number of components. Generally the higher number of components leads to a
better error rate.

CHAPTER 4. THE BASELINE SYSTEM 36

Figure 4.7: Screenshot the baseline system detecting events well.

Figure 4.8: Screenshot the baseline system detecting events poorly.

Chapter 5

Acoustic Features for Sound Event

Detection

5.1 Introduction

Using the baseline system as a starting point, novel feature extraction techniques not usually

used in Sound Event Detection will be explored. Traditionally in SED the choice of features

are usually just MFCCs and not much more than this. Considering the audio source is a

scene and not a speech signal this is an interesting choice to be the state of the art. The

features to be experimented with are the following:

1. Centroid

2. Root-Mean-Square Energy (RMSE)

3. Flux

4. Rolloff

5. Sharpness

6. Slope

7. Spread

8. Zero Crossing Rate

The majority of these features are spectral features apart from RMSE and Zero Crossing

Rate, which are in the time domain.

37

CHAPTER 5. ACOUSTIC FEATURES FOR SOUND EVENT DETECTION 38

5.2 Experiment Setup

The 8 features stated in the the introduction will be the main focus of the experiments. The

spectral features are extracted from the exactly same spectrum. That is they all use the

resulting spectrum from framing the time domain by signal using 40 ms frames with a hop

length of 20 ms, a Hamming window and using 2048 DFT components. The time domain

features were extracted from the 40 ms second frames with the hop length of 20 ms, this means

that all the resulting frames for the features line up. Alternatively, features that require a

longer time frame could have been used, however they would have not lined up with the other

features, which would have meant a different approach would have been required. A separate

system would have needed to be trained for each of the different feature types and then the

likelihoods would be have been considered together. This is a potential direction for further

work.

The initial experiments will extend the baseline system by concatenating each of the new

features onto the baseline system’s MFCC features. Along with the features the ∆ and ∆∆

of the new features will also be concatenated onto the feature vector. Recall in chapter 4 that

the features in the system are normalised. The additional features will again be normalised

using the same procedure, this is to put all features onto the same scale . In the previous

chapter, it was discussed that the SED system relies on a threshold value to determine

whether the likelihood of an event is high enough to mark a frame as containing that event;

because of this the threshold, like in the previous chapter, will be tweaked and metrics will

be recalculated creating a more general measure of performance. Again a threshold from 0 to

300 is used with a resolution of 1 experiment per 5 threshold units. To ensure that the results

are a fair reflection the same cross fold validation setup provided for the baseline system will

be used.

5.3 Extending the Baseline Features

The performance benefit of using additional features along with the MFCCs will be evaluated

in the following experiments. Firstly a separate experiment will be carried out for each

new feature, which involves simply concatenating the feature onto the MFCC vector. The

thresholds used for these experiments will again be between 0 and 300 with a resolution of

1 experiment per 5 threshold units. This is because the thresholds below 0 give very high

Error Rates and therefore do not give a very fitting solution even though the F-Score may

be good. These experiments have also been repeated using multiple components to see how

the number of components effect the performance of different features.

The results of the experiments are shown in figure 5.1, these plots show the average values

for each of the components using the different feature types. The plots at the top of the

figure show the F-Scores and the plots and the bottom of the figure show the Error Rate

CHAPTER 5. ACOUSTIC FEATURES FOR SOUND EVENT DETECTION 39

Figure 5.1: Results from using multiple different features averaged together, showing the
performance different between different components.

scores. Plots of the individual feature results are shown in the appendix. The results back

up the previous observations that in general, a higher amount of components produce worse

F-Scores but produce better Error Rates. A good SED system should have a high F-Score

but also ideally have an Error Rate below 1. An Error Rate above 1 means that the system is

getting more events wrong than it is right. The graphs also highlight the lack of correlation

between the two metrics used in the competition, this makes it difficult to judge a definitive

better solution. Systems tended to perform best in terms of F-Score when the threshold was

around 50, however at this point Error Rates were often above 1, and sometimes by a large

margin. Likewise when the Error Rate is at its lowest the F-Score starts to decline.

For the following experiments, 16 Gaussian components will be used. The reason for 16

components is based on inspecting the plots in figures 5.1. The Error Rates of 16 and 32

components reach a respectable value at a far lower threshold. When taken into consideration

with F-Scores, having a low Error Rate at a low threshold is a good property as F-Score tends

to decrease as the threshold is increased. The F-Score of 32 components tended to be far

lower than the rest of the component choices. However, 16 components performed with an

F-Score close to that of the lower components and sometimes better. For this reason using

16 components gave the best balance between a respectable Error Rate and a good F-Score.

CHAPTER 5. ACOUSTIC FEATURES FOR SOUND EVENT DETECTION 40

Now that the best number of Gaussian components to use for this SED system for the

dataset provided has been decided to be 16. The F-Scores of 16 components from the previous

experiments have been shown together in figure 5.2. This shows the relative difference between

the different feature choices. The plots clearly shows that for the Home scene all the different

feature types improved upon the F-Score. For the Residential Area scene improvement was

a bit more difficult due to the system already performing well for this scene. However even

with this being the case a slight improvement was still made by the majority of the features.

Only features such as Centroid and Spread had a negative impact on the performance. This

is when looking at the general performance of the F-Score in isolation and not the Error

Rate.

Figure 5.2: F-Score for different features over the two scenes. All the features improve upon
the baseline system in the Home scene (left). For the Residential Area scene most of the
features saw an improvement.

Now looking at the Error Rate of the systems in figure 5.3, the additional features struggled

to get a low Error Rate in the Home scene. Most of the features needed a threshold of 250

to get a Error Rate below 1. By this point a lot of the F-Scores are lower than that achieved

by the baseline system when it got to an Error Rate of below 1 at around a threshold of

125 in the Home scene. In contrast, for the Residential Area scene all the features achieved

good Error Rates along with their improved F-Scores. Very interestingly, Rolloff managed to

improve upon the impressive baseline system performance for Error Rate.

A lot of the features improved the F-Score of the SED system. However in doing so this led to

a higher Error Rate. In table 5.1 the average scores over the two scenes are shown. Looking

at the table, if the maximum F-Score is being used to judge the performance, then the best

features to extend the system are Flux, Rolloff, Energy and Spread. However if the Error

Rate is also being considered, this is not the case. The F-scores shown in the table correspond

to the F-scores when the error rate is 1. This is a better judgement of the actual performance

difference between the different features. The table shows quite a bit of difference between

CHAPTER 5. ACOUSTIC FEATURES FOR SOUND EVENT DETECTION 41

features that produce high F-Scores and features that produce a high F-Score when the Error

Rate is 1. For example Root-Mean-Square Energy produces a maximum F-Score of 33.5%,

which is the third highest F-Score. However when the Error rate is down to 1 this score

has reduced to 30.0%, making it the fifth highest F-Score compared to the other F-Scores of

features when their Error Rate is 1. A lot of the features produce a better maximum F-Score

than the baseline system; however with Error Rate taken into consideration, only Flux and

Rolloff managed an improvement. Flux managed a 3% relative F-Score improvement over the

baseline system when the Error Rates are 1. Flux gives a 6.7% relative improvement over the

baseline when using the maximum F-Scores. Comparing the maximum F-Score for Flux to

the reported F-Score for the baseline system by the competition organisers, a massive 47.6%

relative F-Score improvement has been made over the 23.7% F-Score reported.

Figure 5.3: Error Rate of the two scenes, when features are concatenated onto the baseline
systems’ MFCCs. Most of the features failed to improve upon the Error Rate of the baseline
system in both of the scenes. Rolloff managed a slight improvement over the baseline system
in the Residential Area scene.

Figure 5.4 shows the visualisation tool demonstrating the difference in the performance

of different features. The baseline system is being compared against the system with the

additional Flux feature and the system with the additional RMS Energy feature. The Flux

feature performed well, as shown in table 5.1. The RMS Energy also performed well with

a high F-Score; however, it had a high Error Rate in general, letting the feature down.

To understand the reason for these scores the visualisation tool will be used. The image

on the left shows the Flux feature improving upon the Baseline system by removing some

False Positives that were previously detected. The Energy feature also removed some of

these False Positives; however, the False Positives of the “dishes” event were extended more,

showing where the Energy feature is performing not so well. The images in 5.4 show the

visualisation tool with the labels file loaded at the top of the page, followed by the results

of the labels of the SED systems. In the right image, the image emphasises this difference

CHAPTER 5. ACOUSTIC FEATURES FOR SOUND EVENT DETECTION 42

Features Threshold F-Score (%) Error Rate Max F-Score (%)

Flux 85 32.7 1.0 35.0
Rolloff 100 32.3 1.0 33.7
Baseline 80 31.7 1.0 32.8
Zero Crossing Rate 110 30.4 1.0 32.2
Energy 125 30.0 1.0 33.5
Spread 100 28.8 1.0 33.4
Sharpness 130 28.3 1.0 32.7
Centroid 130 26.8 1.0 31.2
Slope 155 25.7 1.0 31.9

Table 5.1: Results of the different features concatenated onto the MFCCs averaging the
results from the two scenes. The results are normalised such that the F-Score are shown for
the threshold which results in an Error Rate of 1.0

even more. Many False Positives were introduced; the energy levels of the “Drawer” events

must be very similar to the Object-impact events. The Energy feature did however pick up

the Object-impact events much better compared to the other features. This means that the

energy feature may be a poor choice on its own with MFCCs, whereas with other additional

features, the feature may become more beneficial. Flux, in the right image, slightly improved

upon the baseline. This was the general result from playing all the audio files. This is a good

property for an additional feature; it is nice to slowly improve the performance opposed to a

more drastic change, like that what was introduced by the Energy feature.

Figure 5.4: SED Visualisation tool demonstrating the the difference in performance between
different feature types. The additional features corrected some of the mistakes made by the
baseline. However they also introduced some of their own mistakes. The Energy feature
added more errors compared to the Flux feature.

CHAPTER 5. ACOUSTIC FEATURES FOR SOUND EVENT DETECTION 43

5.4 Combining Novel Features

Finally to conclude this chapter, experiments will further attempt to improve the baseline

system through combining the features used in the previous section. Using the results in

table 5.1 the features which performed the best will be combined. The best features in this

context are defined in terms of their maximum F-Score. Four different mixtures of features

will be initially used in the following experiments; these are:

1. Mixture 1: MFCCs + Flux

2. Mixture 2: MFCCs + Flux + Rolloff

3. Mixture 3: MFCCs + Flux + Rolloff + Energy

4. Mixture 4: MFCCs + Flux + Rolloff + Energy + Spread

Again, 16 components will be used, using the same cross fold validation setup. In addition

to this the dimensionality of the data will be reduced using Principal Component Analysis

(PCA) down to 59 features after concatenation. This is to make the experiment fairer, as

with more features there are more parameters that need to be learnt for the GMM. The PCA

implementation was created using Numpy’s linalg.eigh function to find the eigenvectors from

the centered covariance matrix; the data is projected onto the first 59 eigenvectors with the

highest eigenvalue.

The results of these experiments are shown in figure 5.5. The plots show the mean values

of the F-Scores and Error Rate over the two scenes. The results show that with PCA the

additional features only make the system perform worse, both in respect to Error Rate and

F-Score. The negative effect of reduction in dimensionality outweighs the benefit of the

reduced amount of parameters. This is because by reducing the dimensionality, important

information has been lost. Further experiments have been shown in figure 5.6 which do not

have the PCA feature reduction. The graph shows that with more features, the SED system

produces a more consistently better F-Score. Combining the 4 best features (MFCCs, Flux,

Rolloff and Energy) produced a curve which consistently had the highest F-Score. However,

looking at the Error Rate graph, the Error Rate again gets worse with the better F-Scores.

The Error Rate is a difficult metric to interpret when the Error Rate is above 1. A system

that detects events but gets a lot of False Positives is better than a system that detects

nothing at all. Using the best F-Score as a measure, the optimal feature choice would be

MFCCs with Flux as this produced the highest F-Score of the configurations. However, using

the features in mixture 4 would, in theory, result in a more consistent system when using a

different dataset. This is because the system is less reliant on the ideal threshold; an ideal

trait of a SED system. A system that consistently performs well is probably a better system

than one that performs really well some of the time.

CHAPTER 5. ACOUSTIC FEATURES FOR SOUND EVENT DETECTION 44

Figure 5.5: Results from combining features through concatenating them together into one
larger feature vector. The feature vector is then reduced using PCA down to 59 features,
which means all the experiments involve learning the same number of parameters.

Figure 5.6: Results from combining features through concatenating them together into one
larger feature vector with no feature reduction.

CHAPTER 5. ACOUSTIC FEATURES FOR SOUND EVENT DETECTION 45

5.5 Summary

In this chapter various novel features have been explored. Mainly features in the frequency

domain were used, with some from the time domain also being explored. The performance

benefit of the one additional feature was experimented with, the results between the two

scenes were quite different. An improvement was made when each of the additional features

were used in the Home scene. The Residential Area proved to be more difficult to improve.

Through repeating the experiments multiple times with different amounts of components, it

was evident that using 16 Gaussian components gave the optimal results. This backs up the

decision of 16 Gaussian which the organisers chose without justification.

Throughout the experiments a common theme between the Error Rate and the F-Score was

the lack of correlation. The optimal F-Score was never the optimal Error rate. This lack of

correlation has made the analysis of best system difficult.

Through concatenating one additional feature to the baseline feature vector, Flux, Rolloff

and Energy showed the most improved F-Score at the best threshold. The features were

then combined together to create an even larger feature vector. This combination resulted

in a consistently well performing system when no PCA was used. However the maximum

F-Score did decrease slightly. Using the knowledge gained through these experiments, the best

performing features will be combined with the best performing data augmentation techniques

in the next chapter.

Chapter 6

Data Augmentation for Sound

Event Detection

6.1 Introduction

Given that the TUT dataset is a small dataset it is difficult to build SED systems which are

robust enough to deal with the variety in the sound events. To counter this, the following

chapter will explore techniques to artificially increase the dataset in a natural way. This

will be achieved through augmenting the data available in the TUT dataset. This is an

analogous to rotating images slightly to generate more data in image recognition. Like with

images it is important that the data is not over augmented which would lead to unrealistic

data. To augment the data the techniques speed and pitch perturbation which were used

by some entrants in the DCASE challenge will be explored and a further technique called

Vocal Tract Length Perturbation (VTLP) will be explored, VTLP is a technique used in

speech recognition to generate utterances that sound like they come from different speakers

by manipulating the length of their vocal tract. Sound events clearly do not have a vocal

tract, however generating new sound events through this technique will, for example make

the size of table change when augmenting an object impact on a table.

6.2 Implementation and Limitations

New data was generated by augmenting the whole audio file and therefore the whole scene,

this is a rather naive approach. A better approach but far more difficult approach would

be to take the sound events out of the scene, augment them and then place them back into

the scene. This approach involves many difficult steps such as first separating the sources in

the audio file to take out just the audio event with no noise or leakage from other events.

Augmenting and then placing the event back into the scene, which is difficult without knowing

46

CHAPTER 6. DATA AUGMENTATION FOR SOUND EVENT DETECTION 47

the reverberation characteristics of the scene. However, this would be an interesting direction

for further work to see the difference in the naive approach compared to this more advanced

approach. Another disadvantage of this technique is that it does not factor in the distribution

of a sound event. An analogous to this is for example if humans were being modelled and to

generate a new human, a human is copied and their height is augmented, it would lead to

some very short and very tall people. This is because, for example if a very short person is

augmented to become even shorter, this could lead to an unrealistic human height. Instead

a better approach would be to use a Gaussian ditribution which would be modelled based on

the mean and variance of human height, then heights would be drawn from this distribution.

Unfortunately figuring out the mean sound for a sound event and their distribution is very

difficult. Also if the distribution is known then no training would even be required, because

that is the aim of machine learning, to learn models. Therefore it is not a practical direction

for augmentation. However, with caution, augmentation factors will be chosen to generate

naturally sounding audio throughout the scenes. Given these known limitations, experiments

will be carried out to see if an improvement can still be made.

Speed perturbation The speed perturbation was implemented using the command line

utility sox’s command called speed this command increases the speed of the audio file by

some factor with the side effect of an increased pitch, this is simply implemented through

re-sampling the audio. Sox also provides a command called stretch which performs a similar

operation but keeps the pitch the same. When listening to the output of the audio files

created from using stretch they sounded distorted, however, when ran through the SED

system, the system performed with similar results to speed. Speed was decided to be the

one used, however stretch is equally as good of a choice. When altering the speed files the

corresponding label files were also altered by dividing the times of all the events by the speed

factor being used.

Pitch perturbation For pitch perturbation sox is used again, this time using the pitch

command. The pitch command shifts the frequencies of the audio file by some shift in cents.

Where 100 cents is a semitone.

VTLP Perturbation There was no tool available to easily apply VTLP therefore it was

implemented using Python. Using the following formula, as given in [34]. VTLP was

implemented using Librosa.

vtlp(f, α) =

fα if f ≤ Fhi
min(α,1)

α

Fmax − Fmax−Fhimin(α,1)

Fmax−Fhi
min(α,1)

α

(Fmax−f) otherwise

Where f is the frequency and α is the factor to augment the frequency. Fmax is the maximum

CHAPTER 6. DATA AUGMENTATION FOR SOUND EVENT DETECTION 48

frequency of the signal which is set to 22050 Hz and Fhi is the peak of the augmentation, this

will be explained further, later on. For now Fhi is set to 17640 Hz (Fmax × 0.8).

The first step of the implementation is to turn the time domain audio signal into the frequency

domain. This was achieved by using a DFT, in particular using Librosa’s stft function using a

40 ms frames with 20 ms hop length, Hamming window and 2048 components. After applying

a DFT the signal is represented with 1025 bins rather than frequencies in Hz, the formula

requires the frequencies to be in Hz. However, each bin has a corresponding centre frequency

fc which can be found with the following formula, where freqsi is the center frequency fc
for bin i:

freqs = linspace(0, Fmax, 1025)

Where linspace gives a matrix of 1025 evenly spaced numbers between 0 and Fmax.

These centre frequencies are then transformed using the formula stated before:

f ′c = vtlp(fc, α)) for each fc ∈ freqs, for some augmenting factor α

This gives a new frequency for each component. From this the frequencies can be transformed

back from frequencies to a bin index. To do this the closest bin for that frequency is found

using the following formula:

freq2bin(f ′c) =
⌊(Fmax + 1)f ′c

2Fmax

⌋
Therefore the VTLP operation can be described as mapping from one bin index i to another

bin index i′ as described below with the function ψ:

i′ = ψ(i, α) = freq2bin(vtlp(freqsi, α)) for each i ∈ bins

Finally the inverse FFT is used to put the frequency domain signal back into the time

domain, where the time domain signal can then be saved to an audio file. The mapping of

the frequency bins are shown in figure 6.1 to show the effect of changing α and Fhi. Fhi is the

peak amount of augmentation, after this point the amount of change decreases until Fmax, α

is how extreme the augmentation is. Using 0.4 shows an extreme decrease in frequency, while

1.2 shows a more subtle increase. VTLP changes the frequencies more intensely before Fhi as

this where the important resonance are, in speech these will be the formants and a Fhi would

be chosen based on the location of the important formants for speech. After the point Fhi

the amount of change in frequency is reduced to produce a more natural final result as most

of the important variation occurs at the lower frequencies and not the higher frequencies.

CHAPTER 6. DATA AUGMENTATION FOR SOUND EVENT DETECTION 49

Figure 6.1: The diagrams above show the mapping between bins when VTLP is used. When
a higher α is used the augmentation is more intense. The Fhi values gives the point of peak
augmentation.

6.3 Experiment Setup

For the initial experiments the dataset will be augmented using the three techniques stated

prior to this: speed, pitch and VTLP perturbation. Experiments will be carried out for each of

the different techniques in isolation. For each augmentation technique different augmentation

factors will be used to show the effect this has on performance. The different configurations

are categorised into three groups, wide, narrow and dense. Wide augmentations perturb

the audio using factors at the extreme ends of what sounds natural. Narrow augmentations

perturb the audio using factors that keep the audio close to the original. Finally the dense

category augments the audio using the same narrow range however, using more factors

in-between the values. To be specific the following augmentation factors will be used creating

9 new datasets:

Speed (Speed factors)

1. Narrow: 0.9, 1.1

2. Wide: 0.8, 0.9, 1.1, 1.2, 1.3

3. Dense: 0.9, 0.95, 1.05, 1.1

CHAPTER 6. DATA AUGMENTATION FOR SOUND EVENT DETECTION 50

Pitch (Cents)

1. Narrow: -100, 100

2. Wide: -300, -100, 100, 300

3. Dense: 0.9, 0.95, 1.05, 1.1

VTLP (α)

1. Narrow: 0.9, 1.1

2. Wide: 0.8, 0.9, 1.1, 1.2, 1.3

3. Dense: 0.9, 0.95, 1.05, 1.1

For the VTLP experiments the Fhi value has been set to 17640hz. The same cross validation

setup will be used that has been used in all the previous experiments however with some

slight alterations as more data is involved. For a fold, only the files in the training data

will be augmented and the files in the test data will be untouched. No augmented versions

of the test data will be present in the training data as this will be an unfair comparison

with the unaugmented data. All the features that were experimented with in the previous

chapters will also be experimented with in data augmentation. This is because some features

may benefit from the added variety and some may just ignore the changes made, again all

the experiments have been repeated using the threshold values between 0 and 300 with a

resolution of 1 experiment per 5 threshold units.

6.4 Increasing the Dataset Through Augmentation

For each of the augmentation configurations specified in the previous section a set of experiments

will be carried out, for each experiment the SED system will be trained on the original

data along with the chosen artificially augmented data. All the different augmentation

configurations will be repeated using the different features discussed in the previous chapter.

That is for each configuration, experiments will be carried out using the MFCC features and

the one additional feature with their corresponding ∆ and ∆∆s. They will again be combined

by concatenating the new features onto the MFCCs. The 16 component GMM will again be

used in the classification system.

6.4.1 Performance Difference Between Augmentation Techniques

After performing all the experiments with the different augmentation configurations and

features, the F-Scores for using all the different features are averaged together at each

threshold to give an overall result for the augmentation techniques.

CHAPTER 6. DATA AUGMENTATION FOR SOUND EVENT DETECTION 51

Figure 6.2: Plots showing the F-Score improvement made through data augmentation. All
the different techniques showed an improvement over using the normal datasets.

Figure 6.3: Plots showing the F-Score performance degrade in the Residential Area.

Figures 6.2 and 6.3 show the average F-Scores of all the features over the threshold values

between 0 and 300, with again a resolution of 1 experiment per 5 threshold units. In the

Home scene in figure 6.2 the graphs clearly show that all the augmentation techniques improve

upon the F-Score of the original dataset. The different categories of augmentation increased

the performance equally well in most of the augmentation techniques. Pitch using the wide

category improved more than the others. These results show that the original SED system is

not robust to small changes in the Home scene, training on the augmented data allowed the

system to become slightly more robust to these small changes. This could be an indicator to

why systems are performing poorer in the Home scene in general.

Now looking at the Residential Area scene, augmentation actually made the system perform

worse. This means that the augmentation techniques used must have created unrealistic

sounds for this scene. For the score to decrease the system would need to have been learning

unrealistic sounds in the training stage, which are now overpowering the realistic sounds in the

original dataset. From inspecting the graphs the Home scene improved relatively more than

CHAPTER 6. DATA AUGMENTATION FOR SOUND EVENT DETECTION 52

Figure 6.4: Plots showing the performance degrade in terms of Error Rate in the Home scene.

Figure 6.5: Plots showing the performance degrade in terms of Error Rate in the Residential
Area scene.

then amount the Residential Area lost in performance. This indicates that augmentation is a

worth while operation to perform, however care needs to be taken. For example VTLP Wide

performed equally well in the Home scene as the other augmentation techniques, however

when looking at the Residential Area scene, this configuration had the most detrimental

effect on performance.

Once again looking at the error rates in figures 6.4 and 6.5, the Error Rate has worsened even

though the F-Score has got better. Interestingly even though the F-Score decreased the most

with the Residential Area scene, it did not lead to as big of an Error Rate increase compared

to the Home scene.

6.4.2 Effectiveness of Augmentation with Different Features

The previous plots showed the improvements that the augmentation techniques made in

general, however they did not show how the techniques effected each of the individual features.

CHAPTER 6. DATA AUGMENTATION FOR SOUND EVENT DETECTION 53

Feature Speed Pitch VTLP

Narrow Wide Dense Narrow Wide Dense Narrow Wide Dense
MFCCs 32.26 31.96 32.87 31.35 32.23 31.27 32.37 31.25 32.63
Centroid 31.55 31.51 31.72 31.48 31.90 31.45 31.70 31.44 31.64
Energy 34.18 34.05 33.06 32.95 32.78 33.37 33.54 32.52 32.43
Flux 33.01 32.71 32.59 31.25 32.50 32.13 32.95 32.67 32.74
Rolloff 31.49 33.03 31.44 31.93 32.17 31.49 31.75 31.12 32.76
Sharpness 32.80 31.77 32.12 31.99 32.29 31.99 31.75 30.84 32.24
Slope 31.30 30.12 31.97 30.84 31.96 30.77 31.41 31.38 31.66
Spread 32.92 32.38 33.24 32.40 33.01 31.99 31.95 32.20 32.45
ZCR 31.46 31.31 32.37 31.10 31.64 30.75 32.15 31.31 32.22

Table 6.1: Table of results of all the features extending the MFCCs with the various different
augmentations. The table shows the maximum F-Score that was achieved after averaging
the two scenes’ scores first.

The results of the different features are shown in table 6.1. Features tended to perform slightly

better when trained on data through speed augmentation.

Now just using the Dense category for each of the augmentation techniques the results are

plotted in figure 6.6. The plots show the performance difference between the augmentation

result and the result from the original dataset i.e (augmentation results − original result).

Figure 6.6 shows that in the Home scene all the features improved using most of the thresholds

which shows that these techniques do result is a better performing system. Interestingly

when comparing the results of the Home scene with the results of the Residential Area scene

a clear difference in the range of results can be seen. With the Home scene most of the

features showed a fairly consistent improvement. The Residential Area scene did not show

this same consistency. Some of the features showed quite a large improvement, such as

Spread which shows a peak performance increase a 4% increase in F-Score. However, some

features showed an equally large degrade in performance such as Rolloff which showed a 4%

decrease in F-Score. Throughout all the experiments in the Residential area scene Rolloff

and Flux tended to benefit the least from the augmentation, this is a shame considering

they were the best performing features when trained on the original data. The features that

performed less well on the normal data tended to perform better after augmentation for

example Spread produced one of the worst results in the original data, however produced the

most improvement consistently in the Residential Area scene.

CHAPTER 6. DATA AUGMENTATION FOR SOUND EVENT DETECTION 54

Figure 6.6: Plots showing the performance change of features’ scores after augmentation. The
Home scene showed a constant improvement with all the different features through-out all
the augmentation techniques. The Residential Area has a range of some features performing
better and some performing worse.

CHAPTER 6. DATA AUGMENTATION FOR SOUND EVENT DETECTION 55

Figure 6.7: Plots comparing the performance of combining data augmentation techniques.
The results show that combining techniques does not give much of an improvement over the
individual augmentation techniques.

6.5 Combining Augmentation Techniques

The previous section showed that an improvement can be made through augmenting the data

using the three techniques. This work will now be continued to combine the better performing

augmentation configuration from the previous section and create one large dataset. It is

expected that the Residential Area will continue to not improve through more augmentation,

as all the different augmentations caused a decrease in performance. However, the Home

scene did see an improvement through all the different augmentation techniques, it will be

interesting to see if combining these augmented audio files creates an even better system,

or whether they conflict and confuse the SED system. To find if combining augmentation

techniques improve performance the following best augmentation configurations will be combined:

Speed Dense, Pitch Wide and VTLP Dense along with the original dataset. The results are

shown in figure 6.7. The scores are again showing the average F-Score/Error Rate from each

feature concatenated onto the MFCCs. The plots show that the additional augmentation

techniques together do not give any additional performance benefits. This suggests that

there is a cap in the performance benefit that can be achieved through augmentation. This

also suggests that there is an overlap in the information being added into the dataset through

the different augmentation techniques. Training the system using the combined augmented

data took around 20 hours for each system using MFCCs with one additional feature. The

systems trained on one set of augmentations took around 6 hours to train. These current

times are manageable, however if a larger base dataset is used the 20 hours may turn into

an unmanageable training time for a small improvement. The results show that only a

little amount of augmentation is needed to get most of the benefit that is achieved through

combining lots of augmentation techniques.

CHAPTER 6. DATA AUGMENTATION FOR SOUND EVENT DETECTION 56

Features Dataset Threshold F-Score Error Rate

MFCCs Normal 35 50.5% 0.96
MFCCs + Flux +
Rolloff + Energy + Spread

Augmented 110 50.4% 0.76

Table 6.2: Results of the training the baseline and new system on new data. The system
with the additional features and augmentation performed a considerable amount better than
the baseline system.

6.6 Running on a New Dataset

For the DCASE challenge the organisers provided a test dataset for the systems to be run

on and this was used to score the systems. However, unfortunately these labels are yet to

be released. This means the best system created in this report cannot be compared against

the ones entered into the competition directly. However, as of writing this report, the new

DCASE 2017 challenge has started and for this challenge a new dataset has been provided.

The organisers have again provided a cross validation setup to fairly evaluate systems. Using

what has been discovered in the previous chapter and in this chapter. The feature extraction

and data augmentation techniques will be combined to see how well what has been discovered

generalises. The scene for the new dataset provided is a street. This scene is similar to a

Residential Area, unfortunately in the previous experiments the Residential Area is where the

systems struggle to get the most improvement. A new system will be created by combining

the best performing features with the best performing data augmentation techniques. The

F-Score and Error Rate will then be stated with no further tweaking to parameters. The

scores will again be produced after all four of the folds in the cross validation have been run,

which should give a fair reflection of the overall performance of each of the systems.

The following systems will be run on the new dataset:

1. MFCCs trained on the base dataset for the new challenge (Baseline).

2. MFCCs + Flux + Rolloff + Energy trained on the new dataset with Speed Dense,

Pitch Wide and VTLP Dense augmentations.

Note that the systems are being trained on the new dataset and not the original. This is

because the techniques are being tested and not the instances of the previous systems. The

optimal threshold has been decided to be the threshold that produced the highest F-Score

in the previous experiments and not the optimal threshold for the new dataset. If just the

optimal score for the new dataset is reported, it will not test the generalisability of the

systems. The results in table 6.2 show the scores for the baseline system at its optimal

threshold and the new system at its optimal threshold. The F-Score’s of the two systems

are very similar to each other, these score’s are very good compared to what was achieved

in the dataset used in the experiments before this. The baseline system shows a very slight

F-Score improvement of 0.1%. The largest difference in score comes from looking at the

CHAPTER 6. DATA AUGMENTATION FOR SOUND EVENT DETECTION 57

Error Rates. The baseline gets a quite respectable Error Rate of 0.96. The new system

has considerably lower Error Rate of 0.76, which is better than any Error Rates found in

the previous experiments. If the MFCC baseline threshold was increased it is likely that

the Error Rate would get better with the side effect of the F-Score decreasing. Given that

the new system has such a good Error Rate it is safe to conclude that this new system has

improved upon the baseline system.

6.7 Summary

In this chapter various data augmentation techniques have been explored. The chosen

techniques were: Speed, pitch and Vocal Tract Length perturbation. All of these techniques

showed a good improvement in the Home Scene however, this was not the case in the

Residential Area. These augmentation techniques actually made some of the systems perform

worse. The effect of augmentation on each of the features was then explored further. It was

found that in the Home scene all the features improved with augmentation. In the Residential

Area scene there was a large disparity between the performance of different features, some

features performed considerably better and some were performing considerably worse. It was

concluded from this that data augmentation through these techniques can certainly improve

upon the performance however, care needs to be taken in with certain features.

The various augmentation techniques were then combined together using their optimal configurations

in order to find if this would bring further performance benefit. From these experiments it was

shown that the same performance benefit can be achieved through very little augmentation

as to what was achieved through combining the augmentations techniques. This implies that

the performance gain of augmentation saturates very quickly.

Finally, this chapter concluded with running an overall best system on a new data. The best

system was decided to be the system will all the best features (MFCCs, Flux, Rolloff, RMS

Energy, Spread) and all the best augmentations (Speed Dense, Pitch Wide, VTLP Dense).

The results of these experiments showed a considerable lower Error Rate while keeping a

similar F-Score.

Chapter 7

Conclusions

7.1 Goals Achieved

The majority of the goals that were set out at the beginning of the project have been achieved.

A new sound event detection visualisation tool has been developed which allows researchers

to easily inspect their results and share their results with others in an intuitive manner.

A new sound event detection framework has been created to allow for the work created in

this project to be extended without the need to recreate an entire sound event detection

system from fresh. The main research topics of the project have been thoroughly explored.

The project aimed to find the effects of introducing new features had on the performance of

SED systems, this was achieved through combining features through concatenation. Mainly

spectral features were explored here, spatial features were also considered however due to

time constraints could not be implemented. As well as features, various data augmentation

techniques were explored. Techniques augmenting the audio signal in the time domain and

the frequency domain were used to achieve this. At the start of the project, this part of

the project also aimed to experiment with data simulation techniques to artificially create

more data. However, it was decided that this part would not be carried out to allow for the

augmentation sections to be more thorough.

7.2 Further Work

Combining the new features with the augmented data gave successful results on the new

2017 DCASE dataset. Unfortunately the label files for the test data for the 2016 DCASE

challenge are yet to be released. The organisers of the challenge have stated that they plan

to release the labels soon. Unfortunately it will be too late to score the systems created in

this report on the test data. However, when they are released it will be interesting to see

how well the systems would rank against the submitted systems. Furthermore, given that

58

CHAPTER 7. CONCLUSIONS 59

the techniques explored in this project were very successful on the new challenge dataset, the

system created will be entered into the new 2017 DCASE challenge to see how well this new

system ranks against the other systems submitted to this year’s challenge. Submitting the

system will involve condensing the work in this project into a 4 page paper.

The classification system used in this project used a GMM. Further work could be carried

out by repeating the experiments performed in this project with other classification systems.

For example a Convolutional Neural Network (CNN) or Recurrent Neural Network (RNN)

could be the replacement. Given the experimental framework created for this report, such

a change should be simple, as it is simply a component of the architecture created. These

further experiments will seek to find if the additional features and the additional data through

augmentation generalises well. Some classification systems such as ones using a CNN may

be invariant to some of the augmentation techniques. However, this is yet to be explored.

Further work with feature extraction could be carried out by exploring the differences between

combining features through concatenation and through combining outputs of multiple classifiers

that are using different features. Only concatenation was used in this project, however, a

system may perform better if say a system was trained using just MFCCs and a system was

trained just using Flux and then having these two classifiers combine their likelihoods to

make a final decision.

In addition to this, further work could be carried out with extending the dataset. In this

project only augmentation was used. However, further work could be achieved through

simulating data. Simulating data can be achieved through finding sound events in isolation

and then placing them together in a scene. Some work was started with this in the early

stages of the project however, unfortunately it was difficult to find enough audio clips that

fit the labels of the challenge and the data augmentation sections became a bigger focus of

the research.

Finally, throughout the project the analysis of the SED systems was difficult due to the

performance metrics that were used. A high F-Score does not necessary give a good SED

system. This is understandable as the F-Score metric was initially designed for evaluating

document retrieval systems. The Error Rate is also lacking, the main difficulty is that wildly

different systems can get similar Error Rates e.g., a system that produces no output will get

the same Error Rate as a system which detects all the events but has an equal amount of

False Positives as events correctly detected. This is quite likely to happen if there are very

few events to be detected. This means that the metric has a bias towards systems that are

very cautious. More cautious systems are not necessarily the better systems. For the field of

sound event detection to grow further, better metrics of performance are needed.

CHAPTER 7. CONCLUSIONS 60

7.3 Conclusion

The main aims of this project were to explore the effects of novel feature extraction and data

augmentation. The results for feature extraction showed that the MFCC features perform

really well and deserve to be used as the state of the art. Small performance benefits can

be achieved through concatenating on an additional feature such as Flux. A 6.7% relative

F-Score improvement was seen when using Flux. When multiple features are concatenated

together, the optimal performance does not increase however a more robust system is created.

The robustness of the system was determined by the system performing well using a wide

range of thresholds. The performance benefits of using different features were a lot clearer in

the Home scene compared to the Residential Area. Principal Component Analysis was used

to see if reducing the dimensionality of the data effected the performance. It was shown that

this reduction caused a negative effect on performance with the chosen features.

Following the research with feature extraction, data augmentation techniques were then

explored. Speed, pitch and Vocal Tract Length Perturbation all produced better performing

systems. Again the Home scene saw the majority of the performance increase. When

inspecting the effect data augmentation had on the various features, in the Home scene a

clear consistent improvement was shown throughout all the features. In the Residential Area

an improvement was shown for some of the features however, an equal performance degrade

was seen with other features. The better performing configurations of the augmentation

techniques were then combined together, to give a far larger dataset. This dataset was then

used to train systems using the various different features again. The performance gain from

using this far larger dataset was just about the same as using any of the other techniques

in isolation. From this it was concluded that the performance benefit from augmentation

saturates quickly and that when these different techniques are combined it does not give

much performance benefit and is not probably worth the considerable longer training time.

After augmentation techniques were explored. The discoveries found in the feature extraction

chapter and the data augmentation chapter were combined. The best four performing features

were then used in combination with the best augmentation configuration for each of the data

augmentation techniques. This combined system was then run on a completely new dataset

provided for the new 2017 DCASE challenge. The results from this system running on

the dataset were then compared to the results of the 2016 DCASE baseline system on the

new dataset. For the results to be a fair comparison the systems were both run on their

optimal thresholds found in the experimental dataset. Using this threshold was decided as

it also tested the generalisability of the systems, it is likely that the systems will not be at

their optimal threshold with the new dataset. The results from these experiments showed a

considerable improvement over the baseline. This concludes that performance benefits can be

achieved through using more novel features and extending datasets through augmentation.

Bibliography

[1] Y.-T. Peng, C.-Y. Lin, M.-T. Sun, and K.-C. Tsai, “Healthcare audio event

classification using hidden markov models and hierarchical hidden markov models,” in

2009 IEEE International Conference on Multimedia and Expo, 2009.

[2] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Multi-label vs. combined

single-label sound event detection with deep neural networks,” in 2015 23rd European

Signal Processing Conference (EUSIPCO). Institute of Electrical and Electronics

Engineers (IEEE), 2015.

[3] S. Chu, S. Narayanan, C. c. Kuo, and M. Mataric, “Where am i? scene recognition for

mobile robots using audio features,” in 2006 IEEE International Conference on

Multimedia and Expo. Institute of Electrical and Electronics Engineers (IEEE), 2006.

[4] M. E. A. Sehili, B. Lecouteux, M. Vacher, F. Portet, D. Istrate, B. Dorizzi, and

J. Boudy, Sound environment analysis in smart home. Springer Berlin Heidelberg,

2012.

[5] S. Ntalampiras, I. Potamitis, and N. Fakotakis, “On acoustic surveillance of hazardous

situations,” 2016.

[6] V. Barbosa, T. Pellegrini, M. Bugalho, and I. Trancoso, “Browsing videos by

automatically detected audio events,” 2011 IEEE EUROCON - International

Conference on Computer as a Tool, 2011.

[7] T. Hao, G. Xing, and G. Zhou, “Isleep: Unobtrusive sleep quality monitoring using

smartphones,” 2013.

[8] T. Heittola. Detection and classification of acoustic scenes and events 2016.

DCASE2016. [Online]. Available: http://www.cs.tut.fi/sgn/arg/dcase2016/

[9] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database for acoustic scene

classification and sound event detection,” 2016.

[10] ——, “Metrics for polyphonic sound event detection,” Applied Sciences, 2016.

[11] T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Audio context recognition using

audio event histograms,” 2010.

61

http://www.cs.tut.fi/sgn/arg/dcase2016/

BIBLIOGRAPHY 62

[12] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Multi-label vs. combined

single-label sound event detection with deep neural networks,” 2015.

[13] T. Heittola, A. Mesaros, and T. Virtanen. (2016) DCASE 2016 baseline system.

[Online]. Available:

https://github.com/TUT-ARG/DCASE2016-baseline-system-python

[14] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Polyphonic sound event

detection using multi label deep neural networks,” 2015 International Joint Conference

on Neural Networks (IJCNN), 2015.

[15] S. Adavanne, G. Parascandolo, P. Pertila, T. Heittola, and T. Virtanen, “Sound event

detection in multichannel audio using spatial and harmonic features,” 2016.

[16] T. Heittola, A. Mesaros, T. Virtanen, and M. Gabbouj, “Supervised model training for

overlapping sound events based on unsupervised source separation,” 2013 IEEE

International Conference on Acoustics, Speech and Signal Processing, 2013.

[17] T. Heittola, A. Mesaros, T. Virtanen, and A. Eronen, “Sound event detection in

multisource environments using source separation,” 2011.

[18] D. Wei, J. Li, P. Pham, S. Das, S. Qu, and F. Metze, “Sound event detection for real

life audio DCASE challenge,” 2016.

[19] T. H. Vu and J.-C. Wang, “Acoustic scene and event recognition using recurrent neural

networks,” 2016.

[20] S. Adavanne, G. Parascandolo, P. Pertila, T. Heittola, and T. Virtanen, “Sound event

detection in multichannel audio using spatial and harmonic features,” 2016.

[21] A. Diment, T. Heittola, and T. Virtanen, “IEEE AASP challenge on detection and

classification of acoustic scenes and events sound event detection for office live and

office synthetic aasp challenge,” 2013.

[22] K. Azad. An interactive guide to the Fourier Transform – BetterExplained. [Online].

Available:

https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

[23] D. Marshall, “Nyquist’s sampling theorem,” 2001. [Online]. Available:

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node149.html

[24] R. Moore. The fourier transform. [Online]. Available:

https://www.dcs.shef.ac.uk//campus only/COM3502-4502-6502/Lecture%20Notes/

COM3502-4502-6502 L15 Fourier-Transform.pdf

[25] (2012, 08) Hamming window - diracdelta science & engineering encyclopedia. [Online].

Available:

http://www.diracdelta.co.uk/science/source/h/a/hamming%20window/source.html

https://github.com/TUT-ARG/DCASE2016-baseline-system-python
https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node149.html
https://www.dcs.shef.ac.uk//campus_only/COM3502-4502-6502/Lecture%20Notes/COM3502-4502-6502_L15_Fourier-Transform.pdf
https://www.dcs.shef.ac.uk//campus_only/COM3502-4502-6502/Lecture%20Notes/COM3502-4502-6502_L15_Fourier-Transform.pdf
http://www.diracdelta.co.uk/science/source/h/a/hamming%20window/source.html

BIBLIOGRAPHY 63

[26] T. Heittola. (2016, 11) DCASE 2016 baseline system matlab. [Online]. Available:

https://github.com/TUT-ARG/DCASE2016-baseline-system-matlab

[27] Y.-H. Lai, C.-H. Wang, S.-Y. Hou, B.-Y. Chen, Y. Tsao, and Y.-W. Liu, “DCASE

report for task 3: Sound event detection in real life audio,” 2016.

[28] (2009) Practical cryptography. [Online]. Available: http://practicalcryptography.com/

miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/

[29] D. Vij, N. Aggarwal, B. Raman, K.K.Ramakrishnan, and D. Bansal, “Acoustic scene

classification based on spectral analysis and feature-level channel combination,”

September 2016.

[30] J. H. Foleiss and T. F. Tavares, “Mel-band features for DCASE 2016 acoustic scene

classification task,” September 2016.

[31] R. Cachu, S. Kopparthi, B. Adapa, and B. Barkana, “Separation of voiced and

unvoiced using zero crossing rate and energy of the speech signal,” 2016.

[32] A. Gorin, N. Makhazhanov, and N. Shmyrev, “DCASE 2016 sound event detection

system based on convolutional neural network,” 2016.

[33] M. Zöhrer and F. Pernkopf, “Gated recurrent networks applied to acoustic scene

classification and acoustic event detection,” 2016.

[34] N. Jaitly and G. E. Hinton, “Vocal tract length perturbation (vtlp) improves speech

recognition,” 2013.

[35] N. Takahashi, M. Gygli, and L. V. Gool, “Learning deep audio features for video

analysis,” 2017.

[36] Time stretching and pitch shifting of audio signals – an overview. [Online]. Available:

http://blogs.zynaptiq.com/bernsee/time-pitch-overview/

[37] (2013) IEEE AASP challenge: Detection and classification of acoustic scenes and

events. [Online]. Available: http://c4dm.eecs.qmul.ac.uk/sceneseventschallenge/

[38] Sed eval. [Online]. Available: https://github.com/TUT-ARG/sed eval

[39] T. Heittola. (2016) Sound event detection. Toni Heittola. [Online]. Available:

http://www.cs.tut.fi/∼heittolt/research-sound-event-detection

[40] (2016, 11) sed vis. GitHub. [Online]. Available: https://github.com/TUT-ARG/sed vis

[41] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Wu, “An

efficient k-means clustering algorithm: analysis and implementation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2002.

[42] Scikit learn mixture. [Online]. Available:

http://scikit-learn.org/stable/modules/mixture.html

https://github.com/TUT-ARG/DCASE2016-baseline-system-matlab
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://blogs.zynaptiq.com/bernsee/time-pitch-overview/
http://c4dm.eecs.qmul.ac.uk/sceneseventschallenge/
https://github.com/TUT-ARG/sed_eval
http://www.cs.tut.fi/~heittolt/research-sound-event-detection
https://github.com/TUT-ARG/sed_vis
http://scikit-learn.org/stable/modules/mixture.html

BIBLIOGRAPHY 64

[43] (2016) Librosa. [Online]. Available: http://librosa.github.io/

http://librosa.github.io/

Appendices

65

Appendix A

DCASE Challenge 2016 Results

Submission Info Segment-based System Characteristics

Rank Code Error
Rate

F-Score Input Features Classifier

1 Adavanne 1 0.8051 47.8% binaural Mel energy RNN

2 DCASE 0.8773 34.3% mono MFCC GMM

3 Adavanne 2 0.8887 37.9% binaural Mel energy + TDOA RNN

4 Zoehrer 0.9056 39.6% mono Spectrogram GRNN

5 Vu 0.9124 41.9% mono Mel energy RNN

6 Liu 0.9287 34.5% mono MFCC Fusion

7 Kong 0.9557 36.3% mono MFCC DNN

8 Pham 0.9583 11.6% mono MFCC DNN

9 Elizalde 4 0.9613 33.6% mono MFCC Random
forests

10 Elizalde 3 0.9635 33.3% mono MFCC Random
forests

11 Phan 0.9644 23.9% mono GCC Random
forests

12 Gorin 0.9799 41.1% mono Mel energy CNN

13 Ubskii 0.9971 39.6% mono MFCC Fusion

14 Elizalde 1 1.0730 22.5% mono MFCC Random
forests

15 Elizalde 2 1.1056 20.8% mono MFCC Random
forests

16 Kroos 1.1488 16.8% N/A N/A Random

17 Schroeder 1.3092 33.6% mono GFB GMM-HMM

Table A.1: Results of the systems for the DCASE challenge ranked by their Segment-based
error score.

66

Appendix B

Installing the SED Visualisation

tool

B.1 Front End

The front end code is built using modern ES6 functionality. This means it is not possible to

run the raw Javascript files. The Javascript files need to be compiled using a build process

which combines the files and converts them to a more compatible version of Javascript.

A build script has be created which requires the node package gulp. If node is not already

installed, install it from https://nodejs.org/en/. Once node has been installed the command

line programs node and npm should be available. Now to install gulp run the following

command:

$ npm i n s t a l l −g gulp

Now gulp has been installed, the other dependencies of the project need to be installed. To

do this change to the directory where the project files are located. All the other dependencies

can be installed using the following command:

$ npm i n s t a l l

This command installs all the dependencies located in the package.json file. The source can

then be compiled using the following command:

$ gulp compileJS

This will then create a main.min.js file in the src directory. This should be used for deploying

the application. When developing the application the following command can be used:

$ npm run dev

This boots up a development node server to compile the Javascript files when the files are

saved.

67

https://nodejs.org/en/

APPENDIX B. INSTALLING THE SED VISUALISATION TOOL 68

B.2 Backend

In order to run the application the Python server needs to be running. The following packages

are needed to be installed through pip or anaconda: pyyaml, librosa, numpy, hashids, scipy

and flask to run the application. The client.min.js file that was compiled in the previous

section needs to be placed into the static/js directory of the server folder in order for the

latest version of the code to be used. The server is now ready to be run. From the root of

the project run python3 server/server.py

Appendix C

Baseline System Results

This section shows that the re-engineered baseline system has not introduced any bugs. The

first section shows the original systems results. This output was generated from the program

and not using the evaluation tool that was provided by the competition. The second section

shows the results from the new re-engineered system which does use the evaluation system

provided.

C.1 Original Baseline System Results

| Main | | Secondary metr i c s

| | | Seg/Overa l l | Seg/Class | Event/Overa l l | Event/Class

Scene | ER | | F1 : ER : ER/S : ER/D : ER/ I | F1 : ER | F1 : ER | F1 : ER |
−−−−−−−−−−−−−−−−−−−+−−−−−−−+ +−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+
home | 0 .97 | | 15 .4 % : 0 .97 : 0 .08 : 0 .83 : 0 .06 | 8 .9 % : 1 .06 | 4 .8 % : 1 .27 | 4 .4 % : 1 .27 |
r e s i d e n t i a l a r e a | 0 .86 | | 31 .5 % : 0 .86 : 0 .05 : 0 .74 : 0 .07 | 17 .6 % : 1 .03 | 2 .9 % : 1 .92 | 1 .5 % : 1 .97 |
−−−−−−−−−−−−−−−−−−−+−−−−−−−+ +−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+
Average | 0 .91 | | 23 .4 % : 0 .91 : | 13 .2 % : 1 .04 | 3 .8 % : 1 .60 | 2 .9 % : 1 .62 |

Resu l t s per events

HOME

| Segment−based | | Event−based

Event | Nref : Nsys : F1 : ER | | Nref : Nsys : F1 : ER |
−−−−−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+ +−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+
(ob j e c t) r u s t l i n g | 170 : 29 : 7 .0 % : 1 .09 | | 41 : 22 : 6 .3 % : 1 .44 |
(ob j e c t) snapping | 61 : 0 : 0 .0 % : 1 .00 | | 42 : 0 : 0 .0 % : 1 .00 |
cupboard | 43 : 0 : 0 .0 % : 1 .00 | | 27 : 0 : 0 .0 % : 1 .00 |
cu t l e r y | 84 : 2 : 0 .0 % : 1 .02 | | 56 : 2 : 0 .0 % : 1 .04 |
d i she s | 204 : 38 : 2 .5 % : 1 .16 | | 94 : 26 : 0 .0 % : 1 .28 |
drawer | 42 : 8 : 0 .0 % : 1 .19 | | 23 : 4 : 0 .0 % : 1 .17 |
g l a s s j i n g l i n g | 48 : 5 : 0 .0 % : 1 .10 | | 26 : 3 : 0 .0 % : 1 .12 |
ob j e c t impact | 291 : 92 : 19 .3 % : 1 .06 | | 155 : 67 : 3 .6 % : 1 .38 |
people walking | 84 : 24 : 14 .8 % : 1 .10 | | 24 : 16 : 10 .0 % : 1 .50 |
washing d i she s | 297 : 107 : 20 .3 % : 1 .08 | | 60 : 48 : 9 .3 % : 1 .63 |
water tap running | 248 : 63 : 34 .1 % : 0 .83 | | 37 : 26 : 19 .0 % : 1 .38 |
−−−−−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+ +−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+
Sum | 1572 : 368 : | | 585 : 214 : |
Average | : 8 . 9 % : 1 .06 | | : 4 . 4 % : 1 .27 |

RESIDENTIAL AREA

| Segment−based | | Event−based

Event | Nref : Nsys : F1 : ER | | Nref : Nsys : F1 : ER |

69

APPENDIX C. BASELINE SYSTEM RESULTS 70

−−−−−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+ +−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+
(ob j e c t) banging | 26 : 0 : 0 .0 % : 1 .00 | | 15 : 0 : 0 .0 % : 1 .00 |
bird s i ng ing | 1095 : 275 : 30 .1 % : 0 .87 | | 162 : 131 : 4 .8 % : 1 .72 |
car pass ing by | 576 : 320 : 54 .5 % : 0 .71 | | 74 : 119 : 3 .1 % : 2 .53 |
ch i l d r en shout ing | 68 : 5 : 0 .0 % : 1 .07 | | 23 : 4 : 0 .0 % : 1 .17 |
people speaking | 365 : 67 : 25 .0 % : 0 .89 | | 41 : 47 : 0 .0 % : 2 .15 |
people walking | 207 : 35 : 1 .7 % : 1 .15 | | 32 : 23 : 0 .0 % : 1 .72 |
wind blowing | 157 : 115 : 11 .8 % : 1 .53 | | 22 : 57 : 2 .5 % : 3 .50 |
−−−−−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+ +−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−+
Sum | 2494 : 817 : | | 369 : 381 : |
Average | : 17 .6 % : 1 .03 | | : 1 . 5 % : 1 .97 |

C.2 Re-engineered Baseline System Results

C.2.1 Home

Segment based metr i c s

−−
Evaluated length : 2033.7 sec

Evaluated f i l e s : 10 f i l e s

Segment length : 1 .00 sec

Overa l l metr i c s (micro−average)

===============

F−measure

F−measure (F) : 15 .4 %

Pre c i s i on : 40 .5 %

Reca l l : 9 . 5 %

Error ra t e

Error ra t e (ER) : 0 .97

Subs t i tu t i on ra t e : 0 .08

De le t ion ra t e : 0 .83

I n s e r t i o n ra t e : 0 .06

Accuracy

S e n s i t i v i t y : 9 .5 %

Sp e c i f i c i t y : 99 .0 %

Balanced accuracy : 54 .2 %

Accuracy : 92 .8 %

Class−wise average metr i c s (macro−average)

===============

F−measure

F−measure (F) : 10 .9 %

Pre c i s i on : 25 .3 %

Reca l l : 5 . 7 %

Error ra t e

Error ra t e (ER) : 1 .06

De le t ion ra t e : 0 .94

I n s e r t i o n ra t e : 0 .11

Accuracy

S e n s i t i v i t y : 5 .7 %

Sp e c i f i c i t y : 98 .9 %

Balanced accuracy : 52 .3 %

Accuracy : 92 .8 %

Class−wise metr i c s

===============

Event l a b e l | Nref | Nsys | F : Pre : Rec | ER : Del : Ins | Sens : Spec : Bacc | Acc |
−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+
(ob j e c t) r u s t l i n g | 170 | 29 | 7 .0 % 24.1 % 4.1 % | 1 .09 0 .96 0 .13 | 4 .1 % 98.8 % 51.5 % | 91 .0 % |
(ob j e c t) snapping | 61 | 0 | nan % nan % 0.0 % | 1 .00 1 .00 0 .00 | 0 .0 % 100.0 % 50.0 % | 97 .0 % |
cupboard | 43 | 0 | nan % nan % 0.0 % | 1 .00 1 .00 0 .00 | 0 .0 % 100.0 % 50.0 % | 97 .9 % |
cu t l e r y | 84 | 2 | 0 .0 % 0 .0 % 0.0 % | 1 .02 1 .00 0 .02 | 0 .0 % 99.9 % 49.9 % | 95 .8 % |
d i she s | 204 | 38 | 2 .5 % 7 .9 % 1.5 % | 1 .16 0 .99 0 .17 | 1 .5 % 98.1 % 49.8 % | 88 .6 % |
drawer | 42 | 8 | 0 .0 % 0 .0 % 0.0 % | 1 .19 1 .00 0 .19 | 0 .0 % 99.6 % 49.8 % | 97 .6 % |
g l a s s j i n g l i n g | 48 | 5 | 0 .0 % 0 .0 % 0.0 % | 1 .10 1 .00 0 .10 | 0 .0 % 99.8 % 49.9 % | 97 .4 % |
ob j e c t impact | 291 | 92 | 19 .3 % 40.2 % 12.7 % | 1 .06 0 .87 0 .19 | 12 .7 % 96.9 % 54.8 % | 85 .0 % |
people walking | 84 | 24 | 14 .8 % 33.3 % 9.5 % | 1 .10 0 .90 0 .19 | 9 .5 % 99.2 % 54.4 % | 95 .5 % |
washing d i she s | 297 | 107 | 20 .3 % 38.3 % 13.8 % | 1 .08 0 .86 0 .22 | 13 .8 % 96.3 % 55.0 % | 84 .4 % |
water tap running | 248 | 63 | 34 .1 % 84.1 % 21.4 % | 0 .83 0 .79 0 .04 | 21 .4 % 99.4 % 60.4 % | 90 .1 % |

APPENDIX C. BASELINE SYSTEM RESULTS 71

C.2.2 Residential Area

Segment based metr i c s

−−
Evaluated length : 2482.9 sec

Evaluated f i l e s : 12 f i l e s

Segment length : 1 .00 sec

Overa l l metr i c s (micro−average)

===============

F−measure

F−measure (F) : 31 .5 %

Pre c i s i on : 63 .9 %

Reca l l : 20 .9 %

Error ra t e

Error ra t e (ER) : 0 .86

Subs t i tu t i on ra t e : 0 .05

De le t ion ra t e : 0 .74

I n s e r t i o n ra t e : 0 .07

Accuracy

S e n s i t i v i t y : 20 .9 %

Sp e c i f i c i t y : 98 .0 %

Balanced accuracy : 59 .5 %

Accuracy : 87 .1 %

Class−wise average metr i c s (macro−average)

===============

F−measure

F−measure (F) : 20 .5 %

Pre c i s i on : 41 .9 %

Reca l l : 12 .4 %

Error ra t e

Error ra t e (ER) : 1 .03

De le t ion ra t e : 0 .88

I n s e r t i o n ra t e : 0 .16

Accuracy

S e n s i t i v i t y : 12 .4 %

Sp e c i f i c i t y : 97 .8 %

Balanced accuracy : 55 .1 %

Accuracy : 87 .1 %

Class−wise metr i c s

===============

Event l a b e l | Nref | Nsys | F : Pre : Rec | ER : Del : Ins | Sens : Spec : Bacc | Acc |
−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+
(ob j e c t) banging | 26 | 0 | nan % nan % 0.0 % | 1 .00 1 .00 0 .00 | 0 .0 % 100.0 % 50.0 % | 99 .0 % |
bird s i ng ing | 1095 | 275 | 30 .1 % 74.9 % 18.8 % | 0 .87 0 .81 0 .06 | 18 .8 % 95.1 % 57.0 % | 61 .9 % |
car pass ing by | 576 | 320 | 54 .5 % 76.2 % 42.4 % | 0 .71 0 .58 0 .13 | 42 .4 % 96.1 % 69.2 % | 83 .8 % |
ch i l d r en shout ing | 68 | 5 | 0 .0 % 0 .0 % 0.0 % | 1 .07 1 .00 0 .07 | 0 .0 % 99.8 % 49.9 % | 97 .1 % |
people speaking | 365 | 67 | 25 .0 % 80.6 % 14.8 % | 0 .89 0 .85 0 .04 | 14 .8 % 99.4 % 57.1 % | 87 .1 % |
people walking | 207 | 35 | 1 .7 % 5 .7 % 1.0 % | 1 .15 0 .99 0 .16 | 1 .0 % 98.6 % 49.8 % | 90 .5 % |
wind blowing | 157 | 115 | 11 .8 % 13.9 % 10.2 % | 1 .53 0 .90 0 .63 | 10 .2 % 95.8 % 53.0 % | 90 .5 % |

Appendix D

Experiments with multiple

Components

72

APPENDIX D. EXPERIMENTS WITH MULTIPLE COMPONENTS 73

APPENDIX D. EXPERIMENTS WITH MULTIPLE COMPONENTS 74

APPENDIX D. EXPERIMENTS WITH MULTIPLE COMPONENTS 75

APPENDIX D. EXPERIMENTS WITH MULTIPLE COMPONENTS 76

	Introduction
	Project Introduction
	Handling Polyphony
	Handling Context

	Aims and Objectives
	Overview of the Report

	Literature survey
	Sound Event Detection Background
	Signal Processing

	Structure of Sound Event Detection Systems
	Feature Extraction
	Spectral Features
	Temporal Features
	Spatial Features

	Data Augmentation
	Audio Mixing
	Vocal Tract Length Perturbation (VTLP)
	Speed Perturbation

	SED Evaluation
	DCASE Challenge
	SED Metrics

	Sound Event Detection Visualisation
	Summary

	SED Visualisation
	Requirements and Analysis
	Design
	Implementation
	Summary

	The Baseline System
	TUT Dataset
	Feature Extraction
	Normalisation
	Classifier
	Post-Processing
	Re-engineering the DCASE system
	Experimental Setup
	Results and Discussion
	Summary

	Acoustic Features for Sound Event Detection
	Introduction
	Experiment Setup
	Extending the Baseline Features
	Combining Novel Features
	Summary

	Data Augmentation for Sound Event Detection
	Introduction
	Implementation and Limitations
	Experiment Setup
	Increasing the Dataset Through Augmentation
	Performance Difference Between Augmentation Techniques
	Effectiveness of Augmentation with Different Features

	Combining Augmentation Techniques
	Running on a New Dataset
	Summary

	Conclusions
	Goals Achieved
	Further Work
	Conclusion

	Appendices
	DCASE Challenge 2016 Results
	Installing the SED Visualisation tool
	Front End
	Backend

	Baseline System Results
	Original Baseline System Results
	Re-engineered Baseline System Results
	Home
	Residential Area

	Experiments with multiple Components

